Phenolic Compounds from Barks of Actinidia arguta Planchon Growing in Korea and its Anti-Oxidative and Nitric Oxide Production Inhibitory Activities

국내산 다래나무 수피의 페놀성 화합물의 항산화 및 Nitric Oxide 생성 억제 활성

  • Published : 2005.09.30

Abstract

Phytochemical examination of the barks of Actinidia arguta led to the isolation of five flavonoids. Structures of compounds were elucidated as catechin (1), (-)-epicatechin (2), quercetin (3), $quercetin-3-O-{\beta}-D-glucopyranoside$ (4), $quercetin-3-O-{\beta}-D-galactopyranoside$ (5) by comparison with previously reported spectral evidences. To investigate the anti-oxidative effect and nitric oxide (NO) production inhibitory activity of these compounds, DPPH radical scavenging activity and nitric oxide production inhibitory activity in $IFN-{\gamma}$, LPS stimulated RAW 264.7 cell were examined. The $IC_{50}s$ were determinied as follows : $1\;$IC_{50}=26.61\;{\mu}g/ml$, $2\;IC_{50}=25.30\;{\mu}g/ml$, $3\;IC_{50}=20.41\;{\mu}g/ml$, $4\;IC_{50}=18.23\;{\mu}g/ml$ , $5\;IC_{50}=30.46\;{\mu}g/ml$, $6\;IC_{50}=28.0;{\mu}g/ml$, $7\;IC_{50}=27.24\;{\mu}/ml$. These NO production inhibitory effects were significantly different compared with the positive control, L-NMMA $(IC_{50}=20.77\;{\mu}g/ml)$, respectively. Compound $1\;(IC_{50}=6.19\;{\mu}g/ml)$, $2\;(IC_{50}=8.98\;{\mu}g/ml)$, $3\;(IC_{50}=7.30\;{\mu}g/ml)$ and $4\;(IC_{50}=7.64\;{\mu}g/ml)$ also showed potent antioxidative activities similar level to ascorbic acid $(IC_{50}=9.22\;{\mu}g/ml)$. These results suggest that barks of A. arguta have a potent anti-oxidative and anti-inflammatory activity.

Keywords

References

  1. 김창민 외 3인 (1998) 중약대사전, 4권 1895-1899: 도서출판 정담. 서울
  2. Sakai, T., Nakajima, K., and Sankan, T. (1980) New monoterpene lactones of the iridane type from Actinidia polygoma. Bull. Chem. Soc. Jpn. 53: 3683-3686. https://doi.org/10.1246/bcsj.53.3683
  3. Huang, C., Li, G., Fan, H., Zhang, Z., and Zhou, J. (1986) A new triterpene from roots of Actinidia eriantha. Yunnan Zhiwu Yanjiu. 8: 489-491
  4. Li, S., Zhang, S., Ma, B., Song, X., Tian, L., and Xiao, G. (1989) Chemical constituents of Actinidia kolomikta. Baiqium Yike Daxue Xuebao. 15: 474-475
  5. Rosemary F. Webby and Kenneth R. Markham (1990) Flavonol 3-O-triglycosides from Actinidia species, Phytochemistry, 29: 289-292 https://doi.org/10.1016/0031-9422(90)89052-B
  6. Rosemary F. Webby (1991) A flavonol triglycoside from Actinidia arguta var. giraldii, Phytochemistry, 30: 2443-2444 https://doi.org/10.1016/0031-9422(91)83680-J
  7. Sashida, Y., Ogawa, K., Mori, N., and Yamanouchi, T. (1992) Triterpenoids from the fruit falls of Actinidia polygoma. Phytochemistry, 31: 2801-2804 https://doi.org/10.1016/0031-9422(92)83634-B
  8. Sashida, Y., Ogawa, K., and Yamanouchi, T. (1994) Triterpenoids from the callus tissue of Actinidia polygoma. Phytochemistry, 2: 377-380
  9. Whang, J., I., Moon, H. I., and Zee, O. P. (2000) Phytochemical Constituents of Actinidia arguta. Kor. J. Pharmacogn., 31: 357-363
  10. Hirsch, A. M., Longeon, A., and Guyot, M. (2002) Fraxin and esculin: two coumarins specific to Actinidia chinensis and A. deliciosa (kiwifruit). Biochemical systematics and ecology, 30: 55-60 https://doi.org/10.1016/S0305-1978(01)00064-3
  11. Hou, F., Chen, F., Lu, Y., and Sun, J. (1995) Anti-infective and antitumor effects of Actinidia arguta stem polysaccharide. Baiqiuen Yike Daxue Xuebao. 21: 472-475
  12. Basile, A., Vuotto, M., L., Violante, U., Sorbo, S., Martone, G and Castaldo-Cobianchi, R. (1997) Antibacterial activity in Actinidia chinensis, Feijoa sellowiana and Aberia caffra. I. J. of Antimicrobial Agents, 8: 199-203 https://doi.org/10.1016/S0924-8579(97)00376-2
  13. Park, E., Kim, B., Jong, H. Son, M., Kim, S., and Jin, M. Jin (2004) Control of IgE and allergy-related Th 1 and Th2 cytokines by PG 102, a water-soluble extract from Actinidia sp. Journal of Allergy and Clinical Immunology. 113: S323
  14. Takano, F., Tanaka, T., Tsukamoto, E., Yahagi, N., and Fushiya, S. (2003) Isolation of (+)-catechin and (-)-epicatechin from Actinidia arguta as bone marrow cell proliferation promoting compounds. Planta Med. 61: 321-326
  15. Fumihide T., Tomoaki, T., Jiro, A., Nobuo, Y., and Shinji, F. (2004) Protective effect of (+)-catechin against 5-fluorouracil-induced myelosuppression in mice. Toxicology. 201 :133-142 https://doi.org/10.1016/j.tox.2004.04.009
  16. Hyun-Jung-Kim, Seung-Hwan Yeom, Mim-Kee Kim, JeaGeul Shim, In-Na Peak and Min-Won Lee (2005) Nitric Oxide and Prostaglandin $E_2$ Synthesis Inhibitory Activitied of Diarylheptanoids from the Barks of Alnusjaponica Strudel. Arch. Pharm. Res. 28: 177-179 https://doi.org/10.1007/BF02977711
  17. Hyun-Jung-Kim, Min-Kee Kim, Jea-Geul Shim, SeungHwan Yeom, Suk-Hyung Kwon, young-Wook Choi, KeunSung Kim and Min-Won Lee (2004) Anti-oxidative Phenolic Compounds from Sophorae Fructus. Nat. Prod. Sci. 10: 330-334
  18. Mosmann, T. (1983) Rapid colorimetric assay for the cellular growth and survival. J. Immun. Methods. 65: 55 https://doi.org/10.1016/0022-1759(83)90303-4
  19. Feelisch, M., Stamler, J. (1996) Methods in nitric oxide research. John Wiley & Sons, 492-497
  20. Hatano, T., Edamatsu, R., Hiramatsu, M., Mori, A., Fujita, Y., Yasuhara, T., Yoshida, T. and Okuda, T. (1989) Effects of the interaction of tannins with co-existing substances. VI Effects of tannins and ralated polyphenols on superoxide anion radical, and on 1, 1-dipheny1-2-picrylhydrazyl radical. Chem. Pharm. Bull., 37: 2016. https://doi.org/10.1248/cpb.37.1
  21. Agrawal, P. K. (1989) Carbon-13 NMR of fravonoids, Eelsevier, 444-446
  22. Harborne, J. B. and Mabry, T. J. (1982) The flavonoids, Chapman and Hall, 91-92, 126