DOI QR코드

DOI QR Code

Anti-tumour Efficiency of Chitosan Hydrogel Containing Anionic Liposomes as a Depot System

음이온성 리포솜이 결합된 키토산 겔의 항암효과

  • Choi, Min-Soo (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Han, Hee-Dong (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Tae-Woo (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Song, Chung-Kil (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Park, Eun-Seok (College of Pharmacy, Sung Kyun Kwan University) ;
  • Shin, Byung-Cheol (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 최민수 (한국화학연구원 나노생체재료팀) ;
  • 한희동 (한국화학연구원 나노생체재료팀) ;
  • 김태우 (한국화학연구원 나노생체재료팀) ;
  • 송충길 (한국화학연구원 나노생체재료팀) ;
  • 박은석 (성균관대학교 제약학과) ;
  • 신병철 (한국화학연구원 나노생체재료팀)
  • Published : 2005.02.20

Abstract

Depot system for local drug delivery using chitosan hydrogel has been developed to enhance the therapeutic efficacy and to prevent the severe side effect in whole body. Thus, we have prepared an injectable chitosan hydrogel containing liposomes to treat cancers clinically. Anionic liposomes incorporated to improve sustained release efficiency within chitosan hydrogel. The chitosan solution containing liposomes was designed to form a hydrogel complex at body temperature. The released behavior of doxorubicin from liposomes in chitosan hydrogel showed sustained-release caused by diffusion of doxorubicin from temperature responsive liposome into chitosan hydrogel. The chitosan hydorgel containing liposomes enhanced the therapeutic potency for the solid tumor in vivo system. Our results indicate that the liposomes in chitosan hydrogel represent a depot system for local drug delivery.

Keywords

References

  1. J.M. Koziara, P.R. Lockman, D.D. Allen and R.J. Mumper, Paclitaxel nanoparticles for the potential treatment of brain tumors, J. Control. Release, 99, 259-269 (2004) https://doi.org/10.1016/j.jconrel.2004.07.006
  2. R.T. Liggins and H.M. Burt, Paclitaxel-Ioaded poly(L-latic acid) microspheres 3: blending low and high molecular weight polymers to control morphology and drug release, Int. J. Pharmaceutics, 282, 61-71 (2004) https://doi.org/10.1016/j.ijpharm.2004.05.026
  3. R.E. Durand and N.E. LePard, Tumour blood flow influences combined radiation and doxorubicin, Radiother. Oncol., 42, 171-179 (1997) https://doi.org/10.1016/S0167-8140(96)01878-6
  4. Y. Barenholz, Liposome application: problems and prospects, Curr. Opin. Colloid. In., 6, 66-77 (2001) https://doi.org/10.1016/S1359-0294(00)00090-X
  5. W.M. Awara, A.E. El-Sisi, M.E. El-Sayad and A.E. Goda, The potential role of cyclooxygenase-2 inhibitors in the treatment of experimentally-induced mammary tumour: does celecoxib enhance the anti-tumour activity of doxorubicin?, Pharm. Res., 50, 487-498 (2004) https://doi.org/10.1016/j.phrs.2004.04.002
  6. W.L. Lu, X.R. Qi, Q. Zang, R.U. Li, G.L. Wang, R.J. Zhang and S.L. Wei, A Pegylated Liposomal Platform: Pharmacokinetics, Pharmacodynamics and Toxicity in Mice Using Doxorubicin as a Model Drug, J. Pharmacol. Sci., 95, 381-389 (2004) https://doi.org/10.1254/jphs.FPJ04001X
  7. R. Krishna, M.S. Webb, G.ST. Onge and L.D. Mayer, Liposomal and Nonliposomal Drug Pharmacokinetices after Administration of Liposome-Encapsulation Vincristine and Their Contribution to Drug Tissue Distribution Properties, J. Pharmacol. Exp. Ther., 298, 1206-1212 (2001)
  8. R.E. Eliaz and F.C. Szoka, Liposome-encapsulated Doxorubicin Targeted to CD44: A Strategy to Kill CD44-overexpressing Tumor Cells, Cancer Res., 15, 2592-2601 (2001)
  9. Z. Liu, R. Cheung, X.Y. Wu and J.R. Ballinger, A study doxorubicin loading onto and release from sulfopropyl dextran ion-exchange microspheres, J. Control. Release, 77, 213-224 (2001) https://doi.org/10.1016/S0168-3659(01)00473-4
  10. D. Needham, G. Anyarambhatla, G. Kong and M. W. Dewhirst, A New Temperature-sensitive Liposome for Use With Mild Hyperthermia: Characterization and Testing in a Human Tumor Xenograft Model, Cancer Res., 60, 1197-1201 (2000)
  11. Y.J. Park, D.E. Nam, D.H. SEO, H.D. Han, T.W. Kim, M.S. Kim and B.C. Shin, Surface Properties of Liposomes Modified with Poly(ethyenimine), Polymer(Korea), 28, 502-508 (2004)
  12. A.S. Derycke and P.A. de Witte, Adv. Liposome for photo. therapy, Adv. Drug Deliver. Rev., 56, 17-30 (2004) https://doi.org/10.1016/j.addr.2003.07.014
  13. S. Simoes, J.N. Moreira, C. Fonseca, N. Duzgunes and M.C.P. de Lima, On the formulation of pH-sensitive liposomes with long circulation times, Adv. Drug Deliver. Rev., 56, 947-965 (2004) https://doi.org/10.1016/j.addr.2003.10.038
  14. C.A, Lorenzo, A. Concheiro, A.S. Dubovik, N.V. Grinberg, T.V Burova and V.Y. Grinberg, Temperature-sensitive chitosan-poly(N-isopropylacrylarnide) interpenetrated networks with enhanced loading capacity and controlled release properties, J. Coltrol. Release, In press, 13 (2004)
  15. E.R. Gariepy, M. Shive, A. Bichara, M. Berrada, D.L. Garrec, A. Chenite and J.C. Leroux, Eroup. A thermosensitive chitosan-based hydrogel for the local delivery of parclitaxel, Eur. J. Pharm. Biopharm., 57, 53-63 (2004) https://doi.org/10.1016/S0939-6411(03)00095-X
  16. Y. Yuyama, M. Tsujimoto, Y. Fujimoto and N. Oku, Potential usage of thermosensitive liposomes for site-specific delivery of cytokines, Cancer Lett., 155, 71-77 (2000) https://doi.org/10.1016/S0304-3835(00)00410-9
  17. D. Needlhan and M.W. Dewhirst, The development and tesing of a new temperature-sensitive drug delivery system for the treatment of solid tumors, Adv. Drug. Deliver. Rev., 53, 285-305 (2001) https://doi.org/10.1016/S0169-409X(01)00233-2
  18. M. Rodolfo, M. Daniotti and V. Vallacchi, Genetic progression of metastatic melanoma, Cancer Lett., 214, 133-147 (2004) https://doi.org/10.1016/j.canlet.2004.06.049
  19. J. Berger, M. Reist, A. Chenite, O.F. Baeyens, J.M. Mayer and R. Gurny, Pseudo-thermosetting chitosan hydrogels for biomedical application, Int. J . Pharmaceutics, In press, (2004)
  20. E.R. Garieoy, G. Leclair, P. Hildgen, A. Gupta and J.C. Leroux, Thermosensitive chitosan based hydrogel containing liposomes for the delivery of hydrophilic molecules, J. Coltrol. Release, 82, 373-383 (2002) https://doi.org/10.1016/S0168-3659(02)00146-3
  21. Y.S. Choi, S.B. Lee, S.R. Hong, Y.M. Lee, K.W. Song and M.H. Park, Studies on gelatin-based sponges. Part : A comparative study of cross-linked gelatin/alginate, gelatin/hyaluronate and chitosan/hyaluronate sponges and their application as a wound dressing in full-thickness skin defect of rat, J. Mater. Sci., 12, 67-73 (2001)
  22. M.G. Jeong, D.S. Kim, Y.H. Choi, T.W. Son, O.K. Kwon and H.S. Lim, Preparation and Properties of Poly(vinyl alcohol)/Chtosan Blend Films, Polymer(Korea), 28, 253-262 (2004)
  23. H.D. Han, D.E. Nam, D.H. Seo, T.W. Kim and B.C Shin, Preparation and Biodegradation of Thermosensitive Chitosan Hydrogel as a Function of pH and Temperature, Macromol Res., 12, 507-511 (2004) https://doi.org/10.1007/BF03218435
  24. Y. Barenholz, Liposome application: problems and prospects, Curr. Opin. Colloid In., 6, 66-77 (2001) https://doi.org/10.1016/S1359-0294(00)00090-X
  25. Y.S. Park, H.D. Han, S.U. Hong, S.S. Kim and B.C. Shin, Temperature-Dependent Release of Drug from Copolymes of N-Isopropylacrylarnide Containing Liposome, Polymer(Korea), 28, 59-66 (2004)
  26. D.E. Nam, H.D. Han, Y.J. Park, Y.A. Kim and B.C. Shin, Realease Profile and Stability of Anionic Liposome, J. Kor. Pharm. Sci., 34, 305-310 (2004)