Pathogen, Insect and Weed Control Effects of Secondary Metabolites from Plants

식물유래 2차 대사물질의 병충해 및 잡초 방제효과

  • Kim, Jong-Bum (Plant Metabolite Engineering Team, National Institute of Agricultural Biotechnology, RDA)
  • 김종범 (농업생명공학연구원 신기능소재개발팀)
  • Published : 2005.03.31

Abstract

Pathogens, insects and weeds have significantly reduced agricultural productivity. Thus, to increase the productivity, synthetic agricultural chemicals have been overused. However, these synthetic compounds that are different from natural products cannot be broken down easily in natural systems, causing the destruction of soil quality and agricultural environments and the gradually difficulty in continuous agriculture. Now agriculture is faced with the various problems of minimizing the damage in agricultural environments, securing the safety of human health, while simultaneously increasing agricultural productivity. Meanwhile, plants produce secondary metabolites to protect themselves from external invaders and to secure their region for survival. Plants infected with pathogens produce antibiotics phytoalexin; monocotyledonous plants produce flavonoids and diterpenoids phytoalexins, and dicotylodoneous plant, despite of infected pathogens, produce family-specific phytoalexin such as flavonoids in Leguminosae, indole derivatives in Cruciferae, sesquitepenoids in Solanaceae, coumarins in Umbelliferae, making the plant resistant to specific pathogen. Growth inhibitor or antifeedant substances to insects are terpenoids pyrethrin, azadirachtin, limonin, cedrelanoid, toosendanin and fraxinellone/dictamnine, and terpenoid-alkaloid mixed compounds sesquiterpene pyridine and norditerpenoids, and azepine-, amide-, loline-, stemofoline-, pyrrolizidine-alkaloids and so on. Also plants produces the substances to inhibit other plant growths to secure the regions for plant itself, which is including terpenoids essential oil and sesquiterpene lactone, and additionally, benzoxazinoids, glucosinolate, quassinoid, cyanogenic glycoside, saponin, sorgolennone, juglone and lots of other different of secondary metabolites. Hence, phytoalexin, an antibiotic compound produced by plants infected with pathogens, can be employed for pathogen control. Terpenoids and alkaloids inhibiting insect growth can be utilized for insect control. Allelochemicals, a compound released from a certain plant to hinder the growth of other plants for their survival, can be also used directly as a herbicides for weed control as well. Therefore, the use of the natural secondary metabolites for pest control might be one of the alternatives for environmentally friendly agriculture. However, the natural substances are destroyed easily causing low the pest-control efficacy, and also there is the limitation to producing the substances using plant cell. In the future, effects should be made to try to find the secondary metabolites with good pest-control effect and no harmful to human health. Also the biosynthetic pathways of secondary metabolites have to be elucidated continuously, and the metabolic engineering should be applied to improve transgenics having the resistance to specific pest.

농작물이 병해충 및 잡초 등에 의하여 피해를 받게 되면 농업생산성은 상당히 저하된다. 따라서 농업생산성을 높이기 위하여 합성농약을 과용해 왔고, 이로 인하여 토양의 질과 농업환경이 파괴되는 결과를 초래하고 있어서 지속적인 농업이 점차 어려워지고 있다. 오늘날의 농업은 농업환경의 파괴를 최소화하고 농산물의 안전성을 확보함과 동시에 생산성을 증대해야하는 복합적인 문제에 직면해 있다. 한편, 식물은 일반적으로 생존하기 위하며 외부의 침입으로부터 자신을 보호하거나 자신의 영역을 확보하기 위하며 다양한 종류의 2차대사물질을 생산하고 방출한다. 병원균이 침입했을 때 식물이 생산하는 항생물질인 phytoalexin으로는 화본과 식물의 경우 flavonoid계와 diterpenoid계의 물질을 생성하고, 쌍자엽 식물은 감염된 병원균의 종류에 상관없이 Leguminosae과는 flavonoids계, Cruciferae과는 indole 유도체, Solanaceae과는 sesquiterpenoid계, Umbelliferae과는 coumarin계 물질들을 생성하여 병원균에 저항성을 가진다. 곤충의 생리작용을 저해하거나 섭생을 싫어하게 하는 기능의 물질로는 terpene계의 pyrethrin, azadirachtin, limonin, cedrelanoid, toosendanin, fraxinellone/dictamnine 등이 있으며, alkaloid계로서는 terpenoid와 alkaloid가 결합된 sesquiterpene pyridine 및 norditerpenoids alkaloids와 azepine계, amide계, loline계, stemofoline계, pyrrolizidine계 alkaloids 등이 있다. 식물은 또한 자신의 영역을 확보하기 위하여 다른 식물의 생장을 저해하는 물질을 생성하는데 여기에는 terpene계의 essential oil 및 sesquiterpene lactone과 이외에 benzoxazinoids, glucosinolate, quassinoid, cyanogenic glycoside, saponin, sorgolennone, juglone 등 다수의 2차 대사물질들이 있다. 이와 같은 기능의 2차 대사물질을 병해충 및 잡초 방제에 직, 간접으로 이용하는 것은 친환경농업의 한 가지 방법일 수 있다. 그러나 천연물질들은 자연계에서 쉽게 분해되어 효율이 떨어지는 경우가 많고 식물을 통하여 생산하는데도 한계가 있다. 따라서 보다 안전성과 효율성이 뛰어난 2차 대사물질을 찾아내는 연구와 아울러 방제기능이 있는 물질의 생합성경로를 구명하고 대사공학적으로 이용하므로 병해충에 저항성이 있고 잡초 방제효과를 갖는 형질전환 식물을 육성하는 연구가 지속적으로 이루어져야 할 것이다.

Keywords

References

  1. Hammerschmidt, R. (1999) Phytoalexins: What have we learned after 60 years? Ann. Rev. Phytopathol. 37, 285-306 https://doi.org/10.1146/annurev.phyto.37.1.285
  2. Osbourn, A. E. (1999) Antimicrobial phytoprotectants and fungal pathogens: A commentary. Fungal Gen. Biol. 26, 163-168 https://doi.org/10.1006/fgbi.1999.1133
  3. Bassman, J. H. (2004) Ecosystem consequences of enhanced solar ultraviolet radiation: Secondary plant metabolites as mediators of multiple tropic interactions in terrestrial plant communities. Photochem. Photobiol. 79, 382-398 https://doi.org/10.1562/SI-03-24.1
  4. Tan, K. H., Nishida, R. and Toong, Y. C. (2002) Floral synomone of a wild orchid, Bulbophyllum cheiri, lures Bactrocera fruit flies for pollination. J. Chem. Ecol. 28, 1161-1172 https://doi.org/10.1023/A:1016277500007
  5. Singh, H. P., Batish, D. R. and Kohli, R. K. (2003) Allelopathic interactions and allelochemicals: New possibilities for sustainable weed management. Critic. Rev. Plant Sci. 22, 239-311 https://doi.org/10.1080/713610858
  6. Chou, C.-H. (1999) Roles of allelopathy in plant biodiversity and sustainable agriculture. Critic. Rev. Plant Sci. 18, 609-636 https://doi.org/10.1016/S0735-2689(99)00393-7
  7. Harborne, J. B. (1999) The comparative biochemistry of phytoalexin induction in plants. Biochem. System. Ecol. 27, 335-367 https://doi.org/10.1016/S0305-1978(98)00095-7
  8. Klocke, J. A. (1987) Natural plant compounds useful in insect control. Amer. Chem. Soc. Ser. 330, 396-415
  9. Kawabata, J., Fukushi, Y., Hayashi, R., Suzuki, K., Mishima, Y., Yamane, A. and Mizutani, J. (1989) 8-methylsulfinyloctyl isothiocyanate as allelochemical candidate from Rorippa sylvestris Besser. Agric. Biol. Chem. 53, 3361-3362
  10. Fisch, .M. H., Flick, B. H. and Arditt, J. (1973) Structure and antifungal activity of hircinol, loroglossol and orchinol. Phytochemistry 12, 437-441 https://doi.org/10.1016/0031-9422(73)80036-6
  11. Koga, J., Ogawa, N., Yamauchi, T., Kikuchi, M., Ogasawara, N. and Shimura, M. (1997) Functional moiety for the antifungal activity of phytocassane E, a diterpene phytoalexin from rice. Phytochemistry 44, 249-253 https://doi.org/10.1016/S0031-9422(96)00534-1
  12. Yajima, A., Mori, K. and Yabuta, G. (2004) Total synthesis of ent-cassa-12,15-diene, a putative precursor of rice phytoalexins, phytocassanes A-E. Tetrahedron Lett. 45, 167-169 https://doi.org/10.1016/j.tetlet.2003.10.131
  13. Dillon, V. M., Overton, J., Grayer, R. J. and Harborne, J. B. (1997) Differences in phytoalexin response among rice cultivars of different resistance to blast. Phytochemistry 44, 599-603 https://doi.org/10.1016/S0031-9422(96)00619-X
  14. Powell, R. G., TePaske, M. R., Plattner, R. D., White, J. F. and Clement, S. L. (1994) Isolation of resveratrol from Festuca versuta and evidence for the widespread occurrence of this stilbene in the poaceae. Phytochemistry 35, 335-338 https://doi.org/10.1016/S0031-9422(00)94759-9
  15. Lo, S. C., Verdier, K. D. and Nicholson, R. L. (1999) Accumulation of 3-deoxyanthocyanidin phytoalexins and resistance to Collectotrichum sublineolum in sorghum. Physiol. Mol. Plant P. 55, 263-273 https://doi.org/10.1006/pmpp.1999.0231
  16. Aguero, M. E., Gevens, A. and Nicholson, R. L. (2002) Interaction of Cochliobolus heterostrophus with phytoalexin inclusions in Sorghum bicolor. Physiol. Mol. Plant P. 61, 267-271 https://doi.org/10.1006/pmpp.2003.0440
  17. Gilbertson, T. J. (1973) Zygacine and zygadenine: The major alkaloids from Zygadenus gramineus. Phytochemistry 12, 2079-2080 https://doi.org/10.1016/S0031-9422(00)91555-3
  18. Luis, J. G., Quinones, W., Echeverri, F., Grillo, T. A., Kishi, M. P., Garcia-Garcia, F., Torres, F. and Cardona, G. (1996) Musanolones: four 9-phenalenones from rhizomes of Musa Acuminata. Phytochemistry 41, 753-757 https://doi.org/10.1016/0031-9422(95)00629-X
  19. Fisch, M. H., Flick, B. H. and Arditti, J. (1973) Structure and antifungal activity of hircinol, loroglossol and orchinol. Phytochemistry 12, 437-441 https://doi.org/10.1016/0031-9422(73)80036-6
  20. Brinker, A. M. and Seigler, D. S. (1993) Time course of piceatannol accumulation in resistant and susceptible sugarcane stalks after inoculation with Colletotrichum falcatum. Physiol. Mol. Plant P. 42, 169-176 https://doi.org/10.1006/pmpp.1993.1015
  21. Cline, E. I., Adesanya, S. A., Ogundana, S. K. and Roberts, M. F. (1989) Induction of pal activity and dihydrostilbene phytoalexins in Dioscorea alata and their plant growth inhibitory properties. Phytochemistry 28, 2621-2625 https://doi.org/10.1016/S0031-9422(00)98053-1
  22. Lopez-Meyer, M. and Paiva, N. L. (2002) Immunolocalization of vestitone reductase and isoflavone reductase, two enzymes involved in the biosynthesis of the phytoalexin medicarpin. Physiol. Mol. Plant P. 61, 15-30
  23. Stevenson, P. C., Turner, H. C. and Haware, M. P. (1997) Phytoalexin accumulation in the roots of chickpea (Cicer arietinum L.) seedlings associated with resistance to fusarium wilt (Fusarium oxysporum sp. ciceri). Physiol. Mol. Plant P. 50, 167-178 https://doi.org/10.1006/pmpp.1997.0082
  24. Martin, M. and Dewick, P. M. (1979) Biosynthesis of the 2-arylbenzofuran phytoalexin vignafuran in Vigna nuguiculata. Phytochemistry 18, 1309-1317 https://doi.org/10.1016/0031-9422(79)83013-7
  25. Ingham, J. L. and Dewick, P. M. (1978) 6-Demethylvignafuran as a phytoalexin of Tetragonolobus maritimus. Phytochemistry 17, 535-538 https://doi.org/10.1016/S0031-9422(00)89354-1
  26. Preston, N. W., Chamberlian, K. and Skipp, R. A. (1975) A 2-arylbenzofuran phytoalexin from cowpea (Vigna unguiculata). Phytochemistry 14, 1843-1844 https://doi.org/10.1016/0031-9422(75)85307-6
  27. Latunde-Dada, A. O. and Lucas, J. A. (2001) The plant defence activator acibenzolar-S-methyl primes cowpea [Vigna unguiculata (L.) Walp.] seedlings for rapid induction of resistance. Physiol. Mol. Plant P. 58, 199-208 https://doi.org/10.1006/pmpp.2001.0327
  28. Liu, L., Punja, Z. K. and Rahe, J. E. (1995) Effect of Pythium spp. and glyphosate on phytoalexin production and exudation by bean (Phaseolus vulgaris L.) roots grown in different media. Physiol. Mol. Plant P. 47, 391-405 https://doi.org/10.1006/pmpp.1995.1067
  29. Clough, J. M. and Snell, B. K. (1981) Confirmation of the structure of the phytoalexins lathodoratin and methyllathodoratin by synthesis. Phytochemistry 20, 1752 https://doi.org/10.1016/S0031-9422(00)98575-3
  30. Robeson, D. J., Ingham, J. L. and Harborne, J. B. (1980) Identification of two chromone phytoalexins in the sweet pea, Lathyrus odoratus. Phytochemistry 19, 2171-2173 https://doi.org/10.1016/S0031-9422(00)82217-7
  31. Dixon, R. A. and Lamb, C. J. (1979) Stimulation of de novo synthesis of phenylalanine ammonia-lyase in relation to phytoalexin accumulation in colletotrichum lindemuthianum elicitor-treated cell suspension cultures of french bean (phaseolus vulgaris). Biochim. Biophys. Acta 586, 453-463
  32. Delserone, L. M., Matthews, D. E. and VanEtten, H. D. (1992) Differential toxicity of enantiomers of maackiain and pisatin to phytopathogenic fungi. Phytochemistry 31, 3813-3819 https://doi.org/10.1016/S0031-9422(00)97534-4
  33. Losovaya, V. V., Lygin, A. V., Zernova, O. V., Li, S., Hartman, G. L. and Widholm, J. M. (2004) Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol. Biochem. 42, 671-679 https://doi.org/10.1016/j.plaphy.2004.06.007
  34. Abbasi, P. A., Graham, M. Y. and Graham, T. L. (2001) Effects of soybean genotype on the glycellin elicitation competency of cotyledon tissues to Phytophthora sojae lucan elicitors. Physiol. Mol. Plant P. 59, 95-105 https://doi.org/10.1006/pmpp.2001.0342
  35. Schopfer, C. R., Kochs, G., Lottspeich, F. and Ebel, J. (1998) Molecular characterization and functional expression of dihydroxypterocarpan 6a-hydroxylase, an enzyme specific for pterocarpanoid phytoalexin biosynthesis in soybean (Glycine max L.). FEBS Lett. 432, 182-186 https://doi.org/10.1016/S0014-5793(98)00866-7
  36. Moesta, P. and West, C. A. (1985) Casbene synthetase: regulation of phytoalexin biosynthesis in Ricinus communis L. seedlings. Purification of casbene synthetase and regulation of its biosynthesis during elicitation. Arch. Biochem. Biophys. 238, 325-333 https://doi.org/10.1016/0003-9861(85)90171-7
  37. Bianchini, G. M., Stipanovic, R. D. and Bell, A. A. (1999) Induction of delta-cadinene synthase and sesquiterpenoid phytoalexins in cotton by Verticillium dahliae. J. Agric. Food Chem. 47, 4403-4406 https://doi.org/10.1021/jf990195y
  38. Mace, M. E., Stipanovic, R. D. and Bell, A. A. (1993) Toxicity of cotton phytoalexins to zoopathogenic fungi. Nat. Toxins 1, 294-295 https://doi.org/10.1002/nt.2620010507
  39. Mert-Turk, F., Bennett, M. H., Mansfield, J. W. and Holub, E. B. (2003) Camalexin accumulation in Arabidopsis thaliana following abiotic elicitation or inoculation with virulent or avirulent Hyaloperonospora parasitica. Physiol. Mol. Plant P. 62, 137-145 https://doi.org/10.1016/S0885-5765(03)00047-X
  40. Conn, K. L., Tewari, J. P. and Dahiya, J. S. (1988) Resistance to Alternaria brassicae and phytoalexin-elicitation in rapeseed and other crucifers. Plant Sci. 56, 21-26 https://doi.org/10.1016/0168-9452(88)90180-X
  41. Pedras, M. S. C., Nycholat, C. M., Montaut, S., Xu, Y. and Khan, A. Q. (2002) Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip. Phytochemistry 59, 611-625 https://doi.org/10.1016/S0031-9422(02)00026-2
  42. Pedras, M. S. C., Loukaci, A. and Okanga, F. I. (1998) The cruciferous phytoalexins brassinin and cyclobrassinin are intermediates in the biosynthesis of brassilexin. Bioorg. Med. Chem. Lett. 8, 3037-3038 https://doi.org/10.1016/S0960-894X(98)00564-2
  43. Dahiya, J. S. and Rimmer, S. R. (1988) Phytoalexin accumulation in tissues of Brassica napus inoculated with Leptosphaeria maculans. Phytochemistry 27, 3105-3107 https://doi.org/10.1016/0031-9422(88)80009-8
  44. Monde, K., Sasaki, K., Shirata, A. and Takasugi, M. (1991) Brassicanal C and two dioxindoles from cabbage. Phytochemistry 30, 2915-2917 https://doi.org/10.1016/S0031-9422(00)98224-4
  45. Monde, K., Takasugi, M. and Shirata, A. (1995) Three sulphurcontaining stress metabolites from Japanese radish. Phytochemistry 39, 581-586 https://doi.org/10.1016/0031-9422(95)00011-U
  46. Abenthum, K., Hildenbrand, S. and Ninnemann, H. (1995) Elicitation and accumulation of phytoalexins in stems, stolons and roots of Erwinia-infected potato plants. Physiol. Mol. Plant P. 46, 349-359 https://doi.org/10.1006/pmpp.1995.1027
  47. Suleman, P., Tohamy, A. M., Saleh, A. A., Madkour, M. A. and Straney, D. C. (1996) Variation in sensitivity to tomatine and rishitin among isolates of Fusarium oxysporumf sp. lycopersici, and strains not pathogenic on tomato. Physiol. Mol. Plant P. 48, 131-144 https://doi.org/10.1006/pmpp.1996.0012
  48. Xie, C. and Kuc, J. (1997) Induction of resistance to Peronospora tabacina in tobacco leaf disks with induced resistance. Physiol. Mol. Plant P. 51, 279-286 https://doi.org/10.1006/pmpp.1997.0104
  49. Perrone, S. T., McDonald, K. L., Sutherland, M. W. and Guest, D. I. (2003) Superoxide release is necessary for phytoalexin accumulation in Nicotiana tabacum cells during the expression of cultivar-race and non-host resistance towards Phytophthora spp. Physiol. Mol. Plant P. 62, 127-135 https://doi.org/10.1016/S0885-5765(03)00026-2
  50. Nugroho, L. H., Peltenburg-Looman, A. M. G., Verberne, M. C. and Verpoorte, R. (2002) Is accumulation of sesquiterpenoid phytoalexins induced in tabacco plants consititutively producing salicylic acid? Plant Sci. 162, 989-993 https://doi.org/10.1016/S0168-9452(02)00049-3
  51. Burden, R. S., Rowell, P. M., Bailey, J. A., Loeffler, R. S. T., Kemp, M. S. and Brown, C. A. (1985) Debneyol, a fungicidal sesquiterpene from tnv infected Nicotiana debneyi. Phytochemistry 24, 2191-2194 https://doi.org/10.1016/S0031-9422(00)83008-3
  52. Cano-Camacho, H., Lopez-Romero, E. and Lozoya-Gloria, E. (1997) Partial purification and characterization of an elicitor stimulated sesquiterpene cyclase from chili pepper (Capsicum accuum L.) fruits. Plant Sci. 124, 23-31 https://doi.org/10.1016/S0168-9452(97)04598-6
  53. Kim, J. B., Lee, S. G., Ha, S. H., Lee, M. C., Ye, W. H., Lee, J. Y., Lee, S. W., Kim, J. B, Cho, K. J. and Hwang, Y. S. (2001) Molecular cloning and characterization of sesquiterpene cyclase cDNA from pepper plant infected with Phytophthora capsici. Agric. Chem. Biotechnol. 44, 59-64
  54. Van Der Sluis, W. G. and Van Arke, J. L. (1981) Thin-layer chromatographic assay of photoactive compounds (furocoumarins) using the fungus penicillium expansum as a test organism. J. Chromatogr. 214, 349-359 https://doi.org/10.1016/S0021-9673(00)80564-6
  55. Beier, R. C. and Oertli, E. H. (1983) Psoralen and other linear furocoumarins as phytoalexins in celery. Phytochemistry 22, 2595-2597 https://doi.org/10.1016/0031-9422(83)80173-3
  56. Afek, U., Carmeli, S. and Aharoni, N. (1995) Columbianetin, a phytoalexin associated with celery resistance to pathogens during storage. Phytochemistry 39, 1347-1350 https://doi.org/10.1016/0031-9422(95)00125-Q
  57. Masuda, T., Takasugi, M. and Anetai, M. (1998) Psoralen and other linear furanocoumarins as phytoalexins in Glehnia littoralis. Phytochemistry 47, 13-16 https://doi.org/10.1016/S0031-9422(97)00528-1
  58. Al-Barwani, F. M. and Eltayeb, E. A. (2004) Antifungal compounds from induced Conium maculatum L. plants. Biochem. Syst. Ecol. 32, 1097-1108 https://doi.org/10.1016/j.bse.2004.02.011
  59. Johnson, C., Brannon, D. R. and Kuc, J. (1973) Xanthotoxin: a phytoalexin of Pastinaca sativa root. Phytochemistry 12, 2961-2962 https://doi.org/10.1016/0031-9422(73)80515-1
  60. Hashem, F. A. E.-M. and Sahab, A. F. (1999) Chemical response of parsley and mentha herbs to certain stress agents. Food Chem. 65, 29-33 https://doi.org/10.1016/S0308-8146(98)00128-9
  61. Marinelli, F., Ronchi, V. N., Dario, P. and Salvador, P. (1990) Induction of 6-methoxymellein 6-hydroxymellein production in carrot cell. Phytochemistry 29, 849-851 https://doi.org/10.1016/0031-9422(90)80031-B
  62. Hitmi, A., Barthomeuf, C. and Sallanon, H. (1999) Rapid mass propagation of Chrysanthemum cinerariaefolium Vis. by callus culture and ability to synthesis pyrethrins. Plant Cell Rep. 19, 156-160 https://doi.org/10.1007/s002990050726
  63. Duke, S. O. (1990) Natural pesticides from plants. In Advances in new crops. Timber Press, Portland, OR. pp. 551-517
  64. Luo, W., Li, Y. and Mu, L. (1997) The toxicities of alkaloids from S. ophora alopecuroids against turnip aphid and effect on several esterases. Acta Entomol. Sin. 40, 385-365
  65. Jiang, S., Liu, J. and Lan, Z. (1999) Insecticidal effects of three kinds of alkaloids on wheat aphids. J. Gansu Agri. Univ. 4, 361-364
  66. Corcuera, L. L. (1984) Effects of indole alkaloids from gramineae on aphids. Phytochemistry 23, 539-541 https://doi.org/10.1016/S0031-9422(00)80376-3
  67. Zuniga, G. E., Salgado, M. S. and Corcuera, L. J. (1985) Role of an indole alkaloid in the resistance of barley seedlings to aphids. Phytochemistry 24, 945-947 https://doi.org/10.1016/S0031-9422(00)83158-1
  68. Zuniga, G. E. and Corcuera, L. J. (1986) Effect pf gramine in the resistance of barley seedlings to the aphid Rhopalosiphum padi. Entomol. Exp. Appl. 40, 259-262 https://doi.org/10.1007/BF00293708
  69. Leszczynski, B., Wright, L. C. and Bakowski, T. (1989) Effect of secondary plant substances on winter wheat resistance to grain aphid. Entomol. Exp. Appl. 52, 135-139 https://doi.org/10.1007/BF00163247
  70. Elliott, M., Janes, N. F., Jeffs, K. A., Needham, P. H. and Sawicki, R. M. (1965) New pyrethrin-like esters with high insecticidal activity. Nature 207, 938-40 https://doi.org/10.1038/207938a0
  71. Hitmi, A., Coudret, A. and Barthomeuf, C. (2000) The production of pyrethrins by plant cell and tissue cultures of Chrysanthemum cinerariaefolium and Tagetes species. Crit. Rev. Biochem. Mol. Biol. 35, 317-337 https://doi.org/10.1080/10409230091169230
  72. Verma, K. V. and Rahman, S. J. (1984) Comparative efficacy of synthetic pyrethroids, natural pyrethrins and DDT against mosquito larvae. J. Commun. Dis. 16, 144-147
  73. Linton, Y. M., Nisbet, A. J. and Mordue, A. J. (1997) The effects of azadirachtin on the testes of the desert locust, Schistocerca gregaria (Forskal). J. Insect Physiol. 43, 1077- 1084 https://doi.org/10.1016/S0022-1910(97)00060-7
  74. Ruberto, G., Renda, A., Tringali, C., Napoli, E. M. and Simmonds, M. S. (2002) Citrus limonoids and their semisynthetic derivatives as antifeedant agents against Spodoptera frugiperda larvae. A structure-activity relationship study. J. Agric. Food Chem. 50, 6766-74 https://doi.org/10.1021/jf020607u
  75. Cespedes, C. L., Calderon, J. S., Lina, L. and Aranda, E. (2000) Growth inhibitory effects on fall armyworm Spodoptera frugiperda of some limonoids isolated from Cedrela spp. (Meliaceae). J. Agric. Food Chem. 48, 1903-1908 https://doi.org/10.1021/jf990443q
  76. Jimenez, A., Mata, R., Pereda-Miranda, R., Calderon, J., Isman, M. B., Nicol, R. and Arnason, J. T. (1997) Insecticidal limonoids from Swietenia humilis and Cedrela salvadorensis. J. Chem. Ecol. 23, 1225-1234 https://doi.org/10.1023/B:JOEC.0000006460.25281.9d
  77. Koul, O., Multani, J. S., Singh, G. and Wahab, S. (2002) Bioefficacy of toosendanin from Melia dubia (syn. M. azedarach) against gram pod-borer, Helicoverpa armigera (Hubner). Curr. Sci. India 83, 1387-1391
  78. Liu, Z. L., Xu, Y. J., Wu, J., Goh, S. H. and Ho, S. H. (2002) Feeding deterrents from Dictamnus dasycarpus Turcz against two stored-product insects. J. Agric. Food Chem. 50, 1447-1450 https://doi.org/10.1021/jf010838l
  79. Jinbo, Z., Mingan, W., Wenjun, W., Zhiqing, J. and Zhaonong, H. (2002) Insecticidal sesquiterpene pyridine alkaloids from Euonymus species. Phytochemistry 61, 699-704 https://doi.org/10.1016/S0031-9422(02)00335-7
  80. Nunez, M. J., Guadano, A., Jimenez, I. A., Ravelo, A. G., Gonzalez-Coloma, A. and Bazzocchi, I. L. (2004) Insecticidal sesquiterpene pyridine alkaloids from Maytenus chiapensis. J. Nat. Prod. 67, 14-18 https://doi.org/10.1021/np030347q
  81. Jinbo, Z., Mingan, W., Wenjun, W., Zhiqing, J. and Zhaonong, H. (2002) Insecticidal sesquiterpene pyridine alkaloids from Euonymus species. Phytochemistry 61, 699-704 https://doi.org/10.1016/S0031-9422(02)00335-7
  82. Gonzalez-Coloma, A., Reina, M., Medinaveitia, A., Guadano, A., Santana, O., Martinez-Diaz, R., Ruiz-Mesia, L., Alva, A., Grandez, M., Diaz, R., Gavin, J. A. and De la Fuente, G. (2004) Structural diversity and defensive properties of norditerpenoid alkaloids. J. Chem Ecol. 30, 1393-1408 https://doi.org/10.1023/B:JOEC.0000037747.74665.0a
  83. Kaltenegger, E., Brem, B., Mereiter, K., Kalchhauser, H., K hlig, H., Hofer, O. Vajrodaya, S. and Greger, H. (2003) Insecticidal pyrido[1,2-a]azepine alkaloids and related derivatives from Stemona species. Phytochemistry 63, 803-816 https://doi.org/10.1016/S0031-9422(03)00332-7
  84. Park, I. K., Lee, S. G., Shin, S. C., Park, J. D. and Ahn, Y. J. (2002) Larvicidal activity of isobutylamides identified in Piper nigrum fruits against three mosquito species. J. Agric. Food Chem. 50, 1866-1870 https://doi.org/10.1021/jf011457a
  85. Blankenship, J. D., Spiering, M. J., Wilkinson, H. H., Fannin, F. F., Bush, L. P. and Schardl, C. L. (2001) Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry 58, 395-401 https://doi.org/10.1016/S0031-9422(01)00272-2
  86. Blankenship, J. D., Spiering, M. J., Wilkinson, H. H., Fannin, F. F., Bush, L. P. and Schardl, C. L. (2001) Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry 58, 395-401 https://doi.org/10.1016/S0031-9422(01)00272-2
  87. Jiwajinda, S., Hirai, N., Watanabe, K., Santisopasri, V., Chuengsamarnyart, N., Koshimizu, K. and Ohigashi, H. (2001) Occurrence of the insecticidal 16,17-didehydro-16(E)-stemofoline in Stemona collinsae. Phytochemistry 56, 693-695 https://doi.org/10.1016/S0031-9422(00)00443-X
  88. Gonzalez-Coloma, A., Gutierrez, C., Hubne, H., Achenbach, H., Terrero, D. and Fraga, B. M. (1999) Selective insect antifeedant and toxic action of ryanoid diterpenes. J. Agric. Food Chem. 47, 4419-24 https://doi.org/10.1021/jf990359a
  89. Jefferies, P. R., Toia, R. F., Casida, J. E. (1991) Ryanodyl 3- (pyridine-3-carboxylate): a novel ryanoid from Ryania insecticide. J. Nat. Prod. 54, 1147-1149 https://doi.org/10.1021/np50076a043
  90. Reina, M., Gonzalez-Coloma, A., Gutierrez, C., Cabrera, R., Henriquez, J. and Villarroel, L. (1998) Pyrrolizidine alkaloids from Heliotropium megalanthum. J. Nat. Prod. 61, 1418-1420 https://doi.org/10.1021/np980175a
  91. Vaughan, S. F. and Spencer, G. F. (1993) Volatile monoterpenes as potential parent structures for new herbicides. Weed Sci. 41, 114-119
  92. Romagni, J. G., Allen, S. N. and Dayan, F. E. (2000) Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol. 26, 303-313 https://doi.org/10.1023/A:1005414216848
  93. Singh, H. P., Batish, D. R. and Kohli, R. K. (2002) Allelopathic effects of two volatile monoterpenes against bill goat weed (Ageratum conyzoides L). Crop Protect. 21, 347-350 https://doi.org/10.1016/S0261-2194(01)00096-5
  94. Singh, H. P., Batish, D. R., Kaur, S., Ramezani, H. and Kohli, R. K. (2002) Comparative phytotoxicity of four monoterpenes against Cassia occidentalis. Ann. Appl. Biol. 141, 111-116 https://doi.org/10.1111/j.1744-7348.2002.tb00202.x
  95. Dudai, N., Poljakoff-Mayber, A., Mayer, A. M., Putievsky, E. and Lerner, H. R. (1999) Essential oils as allelochemicals and their potential use as bioherbicides. J. Chem. Ecol. 25, 1079-1089 https://doi.org/10.1023/A:1020881825669
  96. Tworkoski, T. (2002) Herbicide activity of essential oils. Weed Sci. 50, 425-431 https://doi.org/10.1614/0043-1745(2002)050[0425:HEOEO]2.0.CO;2
  97. Lydon, J., Teasdale, J. R. and Chen, P. K. (1997) Allelopathic activity of wormwood (Artemisia annua) and the role of artemisinin. Weed Sci. 45, 807-811
  98. Macias, F. A., Molinillo, J. M. G., Galindo, J. C. G., Varela, R. M., Torres, A. and Simonet, A. M. (1999) Terpenoids with potential use as natural herbicide templates. In Biologically Active Natural Products: Agrochemicals. CRC Press, Boca Raton, FL. pp. 15-31
  99. Batish, D. R., Singh, H. P., Kohli, R. K. and Saxena, D. B. (2001) Allelopathic effects of parthenin-a sesquiterpene lactone, on germination, and early growth of mung bean (Phaseolus aureus Roxb.). Plant Growth Regl. Soc. Am. Quart. 29, 81-91
  100. Cespedes, C. L., Hoeneisen, M, Bittner, M, Becerra, J. and Silva, M. (2001) Comparative study of ovatifolin antioxidant and growth inhibition activities. J. Agric Food Chem. 49, 4243-4251 https://doi.org/10.1021/jf010351c
  101. Friebe, A. (2001) Role of benzoxazinones in cereals. J. Crop. Prod. 4, 379-400 https://doi.org/10.1300/J144v04n02_18
  102. Mizutani, J. (1999) Selected allelochemicals. Crit. Rev. Plant Sci. 18, 653-671 https://doi.org/10.1016/S0735-2689(99)00395-0
  103. Oleszek, W. and Jurzysta, M. (1987) The allelopathic potential of alfalfa root medicagenic acid glycosides and their fate in soil environment. Plant Soil 98, 67-80 https://doi.org/10.1007/BF02381728
  104. Kawabata, J., Fukushi, Y., Hayashi, R., Suzuki, K., Mishima, Y., Yamane, A. and Mizutani, J. (1989) 8-methylsulfinyloctyl isothiocyanate as allelochemical candidate from Rorippa sylvestris Besser. Agric. Biol. Chem. 53, 3361-3362
  105. Dayan, F. E., Watson, S. B., Galindo, J. C. G., Hernandez, A., Dou, J., McChesney, J. D. and Duke, S. O. (1999) Phytotoxicity of quassinoids: Physiological responses and structural requirements. Pestic. Biochem. Phys. 65, 15-24 https://doi.org/10.1006/pest.1999.2432
  106. Weston, L. A. (1996) Utilization of allelopathy for weed management in agroecosystems. Agron. J. 88, 860-866 https://doi.org/10.2134/agronj1996.00021962003600060004x
  107. Anaya, A. L. (1999) Allelopathy as a tool in the management of biotic resource in agroecosystems. Crit. Rev. Plant Sci. 18, 697-739
  108. Waller, G. R., Jurzysta, M. and Thome, R. L. Z. (1995) Root saponins from alfalfa (Medicago Sativa L.) and their allelopathic activity on weeds and wheat. Allelopathy J. 2, 21-30
  109. Gorski, P. M., Miersch, J. and Ploszynski, M. (1991) Production and biological activity of saponins and canavanine in alfalfa seedlings. J. Chem. Ecol. 17, 1135-1143 https://doi.org/10.1007/BF01402939
  110. Gonzalez, V. M., Kazimir, J., Nimbal, C., Weston, L. A. and Cheniae, G. M. (1997) Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J. Agric. Food Chem. 45, 1415-1421 https://doi.org/10.1021/jf960733w
  111. Willis, R. J. (2000) Juglans spp. juglone and allelopathy. Allelopathy J. 7, 1-55
  112. Rizvi, S. J. H., Rizvi, V., Mukerji, D. and Mathur, S. N. (1987) 1,3,7-Trimethylxanthine, an allelochemical from seeds of Coffea arabica, some aspects of its mode of action as a natural herbicide. Plant Soil 98, 81-91 https://doi.org/10.1007/BF02381729
  113. Campbell, G., Lambert, J. D. H., Arnason and Towers, G. H. N. (1982) Allelopathic properties of $\alpha -terthienyl $ and phenylheptatriyne, naturally occurring compounds from species of Asteraceae. J. Chem. Ecol. 8, 961-972 https://doi.org/10.1007/BF00987662
  114. Rimando, A. M., Dayan, F. E., Mikell, J. R. and Moraes, R. M. (1999) Phytotoxic lignans of Leucophyllum frutescens. Nat. Toxins 7, 39-43 https://doi.org/10.1002/(SICI)1522-7189(199902)7:1<39::AID-NT38>3.0.CO;2-2
  115. Gajic, D., Malencic, S., Vrbaski, M. and Vrbaski, S. (1976) Study of the quantitative and qualitative improvement of wheat yield through agrostemin as an allelopathic factor. Fragm. Herb. Jugoslavica 63, 121-141
  116. Vaccarini, C. E., Palacios, S. M., Meragelman, K. M. and Sosa, V. E. (1999) Phytogrowth-inhibitory activities of a clerodane from Viguiera tucumanensis. Phytochemistry 50, 227-230 https://doi.org/10.1016/S0031-9422(98)00518-4
  117. Vaccarini, C. E. and Bonetto, G. M. (2000) Selective phytotoxic activity of withanolides from Iochroma australe to crop and weed species. J. Chem. Ecol. 26, 2187-2196 https://doi.org/10.1023/A:1005576617857
  118. Fujii, Y. (1999) Allelopathy of velvetbean: Determination and identification of L-DOPA as a candidate of allelopathic substances. In Biologically Active Natural Products. CRC Press, Boca Raton, FL. pp. 33-48
  119. Shettel, N. L. and Balke, N. E. (1983) Plant growth response to several allelopathic chemicals. Weed Sci. 31, 293-298
  120. Sinha, A. K. (1994) Possible role of phytoalexin inducer chemicals in plant disease control. In Handbook of phytoalexin metabolism and action. Marcel Dekker, New York. pp. 555-591
  121. Corcuera, L. J. (1993) Biochemical basis for the resistance of barley to aphids. Phytochemistry 33, 741-747 https://doi.org/10.1016/0031-9422(93)85267-U
  122. Niemeyer, H. M. (1988) Hydroxamic acid content of Triticum species. Euphytica 37, 289-293
  123. Nicol, D., Copaja, S. V., Wratten, S. D. and Niemeyer, H. M. (1992) A screen of worldwide wheat cultivars for hydroxamic acid levels and aphid antioxenosis. Ann. Appl. Biol. 121, 11-18 https://doi.org/10.1111/j.1744-7348.1992.tb03982.x
  124. Kato-Noguchi, H. (2003) Isolation and identification of an allelopathic substance in Pisum sativum. Phytochemistry 62, 1141-1144 https://doi.org/10.1016/S0031-9422(02)00673-8
  125. Chen, P. K. and Leather, G. R. (1990) Plant growth regulatory activities of artemisinin and its related compounds. J. Chem. Ecol. 16, 1867-1876 https://doi.org/10.1007/BF01020500
  126. Fisher, R., Budde, I. and Hain, R. (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J. 11, 489-498 https://doi.org/10.1046/j.1365-313X.1997.11030489.x