Effects of Water in Extracts of Pueraria Radix on Serum Enzymes Activities and Hormone in Aluminum-Administeredrats

갈근 열수 추출물이 알루미늄을 투여한 흰쥐의 혈청 효소 활성도와 호르몬에 미치는 영향

  • Han, Sung-Hee (Dept. of Food of Nutrition Wonkwang Health Science College) ;
  • Shin, Mee-Kyung (Dept. of Food of Nutrition, College of Human Environmental Science, Wonkwang University)
  • 한성희 (원광보건대학 식품영양과) ;
  • 신미경 (원광대학교 생활과학대학 식품영양학과)
  • Published : 2005.02.28

Abstract

This study was designed to investigates the effects of Korean pueraris radix water extract in Al(Aluminum) administered rats. Forty-eight male Sprague-Dawley rats weighing $100{\pm}10g$ were used for this experiment and divided into following 6 groups; control group, 3% pueraria radix in water extract group, 1000 and 2000ppm Al group, 1000 and 2000ppm Al group with 3% pueraria radix in water extract group. The Al administered rats were given 1000 and 2000 ppm of $Al_2(SO_4)_3$ disoved in the distilled water. The Al content in the rats tissue of Al administered group was lower than in the rats tissue of Al group with 3% pueraria radix in water extract group. Plasma levels of renin and aldosterone activity was increased by Al administration group, compared with 3% pueraria radix in water extract group and Al administred group. Glutamate oxaloacetate transaminase(GOT) and Glutamate pyruvate transaminase(GPT) were increased in Al-administered group and lower in the 3% extracts of pueraria radix in water extract group. Lactate dehydrogenase(LDH) was lower in the 3% extracts of pueraria radix-Al group than in the Al group. This results suggested that pueraria radix in water extract group has a lowering effects on the accumulation of Al and it is belived that the pueraria radix in extracted water group has some protective effects to Al administered in rats, but the mechanism of these effects was obscure.

알루미늄 용액과 갈근 열수 추출액의 급여가 흰쥐의 Aldosterone, rennin의 호르몬과 GOT, GPT. LDH의 효소 활성도에 미치는 영향을 조사하였다. 식이섭취량은 각 실험군간에 유의성은 나타나지 않았으며 체중증가량은 농도를 달리한 알루미늄 단독 급여군에 비하여 갈근과 알루미늄의 병합 급여군이 유의적으로 감소하였다. 신장조직은 다론 조직에 비하여 농도를 달리한 알루미늄 단독 급여군은 $1.78{\sim}1.83g$이었으나 알루미늄과 갈근 병합 급여군은 $2.10{\sim}2.19g$으로 유의적으로 증가하였다 rennin 활성도에서 각각 농도를 달리한 알루미늄 급여군은 $399.98{\sim}464.58ngAl/ml/hr$에 비하여 알루미늄과 갈근 병합 급여군이 $289.74{\sim}88ngAl/ml/hr$으로 알루미늄 단독 급여군에 비하여 유의적으로 감소하였다. aldosterone 활성도는 각각 농도를 달리한 알루미늄 병합 급여군은 1351.60{\sim}1394.83pg/ml$ 알루미늄과 갈근 열수 추출물 병합 급여군이 $954.54(\sim}9632.57pg/ml$으로 알루미늄 병합 급여군에 비하여 감소하였다. GOT는 농도를 달리한 알루미늄 단독 급여군은 $258.60{\sim}395.80IU/L$인데 비하여 알루미늄과 갈근 열수 추출물 병합 급여군이 $314.20{\sim}320.20IU/L$으로 유의적으로 감소하였다. GPT는 농도를 달리한 알루미늄 급여군은 $100.40{\sim}108.20IU/L$인데 비하여 갈근 열수 추출액 급여군과 알루미늄 병합 급여군은 $70.80{\sim}81.00IU/L$으로 유의적으로 감소하였다. LDH는 농도를 달리한 알루미늄 급여군은 $3157.20{\sim}3726.20IU/L$인데 비하여 갈근 열수 추출액 급여와 알루미늄 동시 병합 급여군은 $2846.60{\sim}2993.20IU/L$으로 유의적으로 감소하여 갈근 열수 추출액 급여군에 의한 알루미늄 중독 완화 효과를 볼 수 있었다.

Keywords

References

  1. Pediatrics v.78 Aluminum toxicity in infants and children Committee on nutrition
  2. Nutrition reaseach review v.3 Nutritional aspects of aluminium toxicity Klein, G.L. https://doi.org/10.1079/NRR19900009
  3. The toxicology of dietary tin aluminum and selenium. Ch 9. In nutritional toxicology vol II Greger, J.L.;Lane, H.W.;Hathcock, J.N.(ed.)
  4. Advance in clinical chemistry v.23 Aluminum Alfrey, A.C. https://doi.org/10.1016/S0065-2423(08)60398-4
  5. New England Journal of medicine v.310 Aluminum intoxication from aluminum-containing phospahte binders in children with azotemia not undergoimg dialysis Andreoil, S.P.;Bergstein, J.M.;Sherrard, J.D. https://doi.org/10.1056/NEJM198404263101704
  6. Journal of pediatrics v.105 Encephalopathy in childhood secondary to aluminum toxocity Sedman, A.B.;Wilkening, G.N.;Bradeley, P.D.;Warrady, B.A.;Lum, G.M.;Alfrey, A.C.
  7. American Journal Medical science v.297 Acute aluminum toxicity associated with oral citrate and aluminum-containg antacids Krschbaum, B.B.;Schoolwerth, A.C. https://doi.org/10.1097/00000441-198901000-00003
  8. Aluminum v.22 Experimental and clinical neurotoxicology Crapper, D.R.;Boni, U.D.
  9. Toxicol Appl Pharmacol v.116 Stable isotropic traces of lead mobilized by DMZA chelation in low lead-exposed rats Smith, D.R.;Fiegal, A.R. https://doi.org/10.1016/0041-008X(92)90148-L
  10. Toxicol Appl Pharamcol v.63 Decreased effectiveness of chelation theraphy with after actue cadmium poisoning Cantilena, L.R.;Klassen, C.D. https://doi.org/10.1016/0041-008X(82)90038-2
  11. Toxicol Appl Pharmacol v.116 Stable isotropic trace of lead mobilized by DMSA chelation in low lead-exposed rats Smith, D.R.;Fiegal, A.R. https://doi.org/10.1016/0041-008X(92)90148-L
  12. Toxicol Appl Pharmacol v.63 Decreased effectiveness of chelation theraphy with time after acute cadium poisoning Cantilena, L.R.;Klassen, C.D. https://doi.org/10.1016/0041-008X(82)90038-2
  13. Toxicol Appl Pharmacol v.97 Influence of 2,3,-dimercaptosuccinic acid on gastrointestinal lead absorption and whole body lead retention Kapor, S.C.;Wielopolski, L.;Graziano, J.H.;Lolacono, N. https://doi.org/10.1016/0041-008X(89)90257-3
  14. Bonchokangmok, 18 Lee, S.J.
  15. Yakugaku zasshi v.115 Chemical studies on crude drug processing X On the constituents of rehamanniae radix, comparison of the constituents of various rehmanniae radix originzting in China, Korea and Japan Kitagawa, I.;Fukuda, Y.;Taniyama, T.;Yoshikawah, M. https://doi.org/10.1248/yakushi1947.115.12_992
  16. Yudagaku Zasshi v.104 Studies on physical and chemical quality evaluation of crude radix and species puerarie Hayakawa, J.;Noda, N.;Yamada, S.;Unok https://doi.org/10.1248/yakushi1947.104.1_50
  17. J Korean Soc Food Nutr. v.24 The effects of Puerariae radix catechins administration on liver function in carbon tetrachloride-treated rats Han, S.H.;Kim, J.B.;Min, S.G.;Lee, C.H.
  18. Planta Med v.54 Isolation and high performance liquid chromatography (HPLC) of isoflavonoids from the pueraria root Ohshims, Y.;Okuyama, T.;Takahashi, K.;Takizawa, T. https://doi.org/10.1055/s-2006-962420
  19. Alcohol Clin Exp Res v.17 Biochemical studies of a new class of alcohol dehydrogenase inhibition from pueriae radix Keung, W.M.;Vallee, B.B. https://doi.org/10.1111/j.1530-0277.1993.tb05238.x
  20. proc. Natl Acad Sci USA v.90 Daidzin a potent selective inhibitor of human mitochondria aldehyde dehydrogenase Keung, W.M.;Vallee, B.B.
  21. Chem Pharm Bull. Tokyo Japan v.40 Mechanism of antioxidant action of pueria glycoside(PG)- I (an isoflavonoid) and mangiferin(a xantlionoid) Sato, T.;Kawamoto, A.;Tamura, A.;Tatsumi, Y.;Fujii, T. https://doi.org/10.1248/cpb.40.721
  22. Phytochemistry v.47 Kudzu root an ancient chinese source of modern antisotropic agents Keung, W.M.;Vallee, B.L. https://doi.org/10.1016/S0031-9422(97)00723-1
  23. Yakugaku Zasshi v.95 Studies on the constituents of flowers V. on me components of flower of Pueria a thunbergiana benth(2). Isolation of new isoflavones glycosides Kurihara, T.;Kikuchi, M. https://doi.org/10.1248/yakushi1947.95.11_1283
  24. At Absorpt Newsl v.131 Rapid acid dissoulation of plant tissue for cadium determination by atomic absorption spectrophotometry Ganje, J.J.;Page, A.L.
  25. Amer J Clin Pathol v.28 A Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transammases Reitman, S.;Frankel, S. https://doi.org/10.1093/ajcp/28.1.56
  26. J. Amer Dig Dis v.15 Very High Levels of SGOT and LDH in Patients with Extrahe-patic Billiary Tract Obstruction Ginsberg, A.L. https://doi.org/10.1007/BF02236040
  27. J. Canad Med Ass v.89 Serum lactic dehydrogenase, leucine amino peptidase and 5-nucleotidase activities, observations in patients with carcinoma of the pancreas and metatobiliary disease Bardwill, C.;Chang, C.
  28. Proc Soc Exper Biol. Med v.90 Lactic dehydrogenase activity in blood Wroblewski, F.;LaDue, J.S. https://doi.org/10.3181/00379727-90-21985
  29. Clin Chem v.9 Serum lactic dehydrogenase activity an analytical assessment of current assays Amador, E.;Dorfman, E.;Wacker, W.E.
  30. L Exp Zool. v.242 Radioimmunoassay and characterization of renin-angiotensin system in the fresh water turtle Cho, K.W.;Kim, S.H.;Koch, G.Y. https://doi.org/10.1002/jez.1402420303
  31. Sci v.144 Antibodies to bradykinin and angiotensin, A use of carbodiimide in immunololgy Goodfriend, T.L.;Levine, L.;Fasma, G.D.
  32. Experimental Am J Physiol v.236 Renin inactivation during in vitro Cho, K.W.;Malvin, R.L.
  33. Am J Med v.55 Searching out low renin patients limitation of some commonly used methods Sealey, J.E.;Laragh, J.H. https://doi.org/10.1016/0002-9343(73)90132-0
  34. Nephron v.51 Plasma concentration of atrial natriuretic peptide in different phase of korean hemmorrhagic fever Cho, K.W.;Kim, S.H.;Koh, G.Y.;Seul, K.H.;Huh, K.S.;Chu, D.;Rap, N.S.;Moon, H.B.;Kim, K.K.;Kook, Y.J. https://doi.org/10.1159/000185288
  35. Kor J Physiol v.16 Factors affecting the relationship between renal renin activity and plasma renin activity Cho, K.W.;Kim, S.H.
  36. SAS User's guide statistics SAS
  37. Lancet v.11 Aluminum toxicity in rats Berlyne, N.C.;Yagil, R.;Ben Ari, J.;Weinberger, G.;Knoph, E.;Danovith, G.M.
  38. Analysis of aluminum concentration in serum and phospholipid composition and catecholamin concentration in the brain of rats feed alumimun in drinking water Lee, H.S.
  39. clinical chemistry v.25 Metabolic balance of aluminum studied in six men Gorsky, J.E.;Dieta, A.A.;Spencer, Hand;Osis, D.
  40. Journal of laboratory and clinical medicine v.90 Evidence for aluminum absorption from the gastrointesrional tract and bone absorption by aluminum carbonate ingestion with normal renal function Rocker, R.R.;Blotcky, A.J.;Leffler, J.A.;Rocker, E.P.
  41. American Journal of clinical nutrition v.35 Aluminum loading during total parenteral nutrition Klein, G.L.;Alfey, A.C.;Miller, N.L.;Sherrard, D.J.;Hazlet, T.K.;Pharm, D.;Amnet, M.E.;Coburn, J.W.
  42. Annals of lnternal Med v.104 Bilary excretion of aluminum in aluminum osteodystrophy with liver disease Williams, J.W.;Vera, S.R.;Peters, T.G.;Luther, R.W.;Bhattacharya, S.;Spenars, M.;Graham, A.;Pitcock, J.A.;Crowford, A.J. https://doi.org/10.7326/0003-4819-104-6-782
  43. Journal of pediatrics v.105 Encephalopathy in childhood secondary to aluminum toxicity Sedman, A.B.;Wikening, G.N.;Bradely, P.D.;Warady, B.A.;Lum, G.M.;Alfrey, A.C.
  44. American Journal of Medical sciences v.297 Acute aluminum toxocity associated with oral citrate and aluminum-containg antacids Kirschbaum, B.B.;Schoolwerth, A.C. https://doi.org/10.1097/00000441-198901000-00003
  45. Food and chemical toxicology v.34 Effects of orally aluminum citrate on short term tissue distribution of aluminum Quarty, B.;Esselmont, G.;Taylor, A.;Dobrota, M.C.
  46. Lancet Alumimun toxicity in rats Beryne, G.M.;Yagil, R.;Ari, J.B.;Weinderger, G.;Knoof, E.;Danovitch, B.M.
  47. J Am Med Assoc v.174 Hypotensive agents and presser substances Laragh, J.H.;Angers, M.;Kelly, W.G.;Loberman, S.
  48. Neurotoxical v.143 Aluminum metabolism in uremia Alfrey, A.C.
  49. Proc Soc Eed Biol Med v.139 Increased plasma renin activity in mature spontaneousely hypertensive rats Babaggy, S.P.;Mndonald, W.J.
  50. Chem Biol. Interaction v.72 Metallothionein accumulation in CHO of cells in response fead treatment Rhee, S.J.;Hung, P.C. https://doi.org/10.1016/0009-2797(89)90009-4
  51. Methods of enzymatic analysis, 1 Bergmeyer, H.U.
  52. J Korean Soc. Food Nutr v.21 Effect of cadmium dose injection on peroxidative damage in rat river Rhee, S.J.;Kim, S.O.;Choe, W.K.;Cho, S.H.