A Major Antioxidative Components and Comparison of Antioxidative Activities in Black Soybean

검정콩의 주요 항산화 원인물질 및 항산화 효과의 비교

  • Kim, Sun-Hee (Food Science Institute, School of Food and life Science, and Biohealth Products Research Center, Inje University) ;
  • Kwon, Tai-Wan (Food Science Institute, School of Food and life Science, and Biohealth Products Research Center, Inje University) ;
  • Lee, Young-Soon (Department of Food and Nutrition, Kyunghee University) ;
  • Choung, Myoung-Gun (Department of Pharmacognosy Material Development, Samcheok National University) ;
  • Moon, Gap-Soon (Food Science Institute, School of Food and life Science, and Biohealth Products Research Center, Inje University)
  • 김선희 (인제대학교 식품과학연구소.식품생명과학부.바이오헬스소재연구센터) ;
  • 권태완 (인제대학교 식품과학연구소.식품생명과학부.바이오헬스소재연구센터) ;
  • 이영순 (경희대학교 식품영양학과) ;
  • 정명근 (삼척대학교 생약자원개발학과) ;
  • 문갑순 (인제대학교 식품과학연구소.식품생명과학부.바이오헬스소재연구센터)
  • Published : 2005.02.28

Abstract

Contents of isoflavone, phenolic acids, tocopherol, and anthocyanin in black soybean (Glycine max) were measured by HPLC. To compare antioxidative activities of main black soybean components, antioxidative effects of the same levels of commercial standard components were measured by Trolox equivalent antioxidant capacity assay (TEAC). Most effective component was gentisic acid followed by anthocyanin, p-coumaric acid, ferulic acid, genistein, syringic acid, and daidzein. TEAC assay results revealed genistein in isoflavone, gentisic acid in phenolic acids, p-tocopherol in tocopherol, and anthocyanin showed highest antioxidative and synergistic acitivities, with anthocyanin showing strongest synergy effect.

검정콩에 함유되어 있는 성분들 중 주요 항산화 원인물질을 구명학기 위하여 청자콩의 isoflavone, 토코페롤, phenolic acids 및 안토시아닌의 함량을 측정하였다. 그 결과 genistein이 43.86mg%, daidzein이 31.73mg% 함유되어 있었으며, 토코페롤 함량은 ${\alpha}$-토코페롤이 1.99mg%, ${\beta}$-토코페롤 0.47mg%, ${\gamma}$-토코페롤 10.68mg%, ${\dalta}$-토코페롤 3.95mg%이 함유되어 있었다. 11종류의 phenolic acids에서는 benzoic(126.70mg%)>p-coumaric(67.68)>salicylic(59.40)>gentisic(43.19)>ferulic(16.57)>syringic(15.04)>chlorogenic(8.00)>caffeic(4.53)>vanillic(2.82)>p-OH benzoic(2.47)>trans-cinnamic acid(1.00)의 순으로 함유되어 있었으며, 검정콩 종피에 함유되어 있는 안토시아닌을 측정한 결과 delphinidin 3-glucoside가 1.42, cyanidin 3-glucoside 5.77 및 petunidin 3-glucoside가 0.30mg/g이었다. 검정콩에 함유되어 있는 항산화 물질들 (안토시아닌, isoflavone, phenolic acids 및 토코페롤)을 검정콩에 들어있는 함량과 비례하도록 조제하여 TEAC법으로 항산화 효과를 측정한 결과, genistein, gentisic acid, ${\gamma}$-토코페롤, 안토시아닌의 항산화 효과가 높은 것으로 나타났다. 네 종류의 항산화 물질들의 시너지 효과를 분석한 결과, 이들은 서로 시너지 효과가 있는 것으로 나타났으며 특히 안토시아닌을 혼합할 때 시너지 효과가 가장 높게 나타나 검정콩의 항산화 효과에 안토시아닌이 크게 관여하고 있음을 알 수 있었다.

Keywords

References

  1. Oh MK, Rhee SH, Cheigh HS. Changes of lipid composition of Korean black soybean before and after soaking. J. Korean Soc. Food Nutr. 21: 29-35 (1992)
  2. Francis FJ. Future trends. pp. 233-247. In: Developments in Food Colors-2, Walford J (ed). Applied Science Publishers, New York, USA (1984)
  3. Tsuda T, Shiga K, Ohshima K, Kawakishi S, Osawa T. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochem. Pharmacol. 52: 1033-1039 (1996) https://doi.org/10.1016/0006-2952(96)00421-2
  4. Hayes RE, Bookwalter GN, Bagley EB. Antioxidant activity of soybean flour and derivatives-A review. J. Food Sci. 42: 15271531 (1977)
  5. Kusunoki T, Higashi H, Hosai S, Hata D, Sugie K, Mayumi M, Migawa H. Tryosine phosphorylation and its possible role in superoxide production by human neutrophils stimulated with FMLP and IgG. Biochem. Biophys. Res. Com. 183: 789-796 (1992) https://doi.org/10.1016/0006-291X(92)90552-V
  6. Record IR, Dreosit IE, Mclnerney JK. The antioxidant activity of genistein in vitro. J. Nutr. Biochem. 6: 481-485 (1995) https://doi.org/10.1016/0955-2863(95)00076-C
  7. Wei H, Wei L, Frenkel K, Bowen R, Barnes S. Inhibition of tumor promotor-induced hydrogen peroxide formation in vitro and in vivo by genistein. Nutr. Cnacer 20: 1-12 (1993) https://doi.org/10.1080/01635589309514265
  8. Wei H, Cai Q, Rahn RO. Inhibition of UV light and Fenton reaction-induced oxidative DNA damage by the soybean isoflavone genistein. Carcinogenesis 17: 73-77 (1996) https://doi.org/10.1093/carcin/17.1.73
  9. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical Biol. Med. 20: 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  10. Barnes PJ. pp. 1095-1100. Progress in Cereal Chemistry and Technology. proc. 7th World cereal and bread congress. Holas J, Kratochvil J (eds). Elsevier, Amsterdam, The Netherland (1983)
  11. Choung MG, Baek IY, Kang ST, Han WY, Shin DC, Moon HP, Kang KH. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine ma.x(L.) Merr.). J. Agric. Food Chem. 49: 5848-5851 (2001) https://doi.org/10.1021/jf010550w
  12. Rice-Evans CA, Miller NJ. Total antioxidant status in plasma and body fluids. Methods Enzymol. 234: 279-293 (1994) https://doi.org/10.1016/0076-6879(94)34095-1
  13. Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A. A novel method for measuring antioxidnat capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 84: 407-412 (1993)
  14. Wang G, Kuan S, Fransis OJ, Ware GM, Carman AS. A simplified HPLC method for the determination of phytoestrogens in soybean and its processed products. J. Agric. Food Chem. 38: 185-190 (1990) https://doi.org/10.1021/jf00091a041
  15. Lee IB, Choi KJ, Yu KK, Chang KW. Tocopherols and fatty acids in plant seeds from Korea. J. Korean Agric. Chem. Soc. 35: 1-5 (1992)
  16. Yoo EA, Cho JH. Separation and determination of tocopherol isomers in nuts food by high performance liquid chromatography. J. Basic Sci. Sungshin Women's univ. 1: 9-17 (1984)
  17. Ryu SH. Studies on antioxidative effects and antioxidative components of soybean and Chongkujang. PhD thesis, Inje University, Korea (2002)
  18. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical Biol. Med. 20: 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  19. Moon GS, Kwon TW, Ryu SH. Comparison of antioxidative activites of soybean components by different assays. Korea soybean Digest 20: 28-36 (2003)
  20. Choi JS, Kwon TW, Kim JS. Isoflavone contents in some varieties of soybean. Food Biotechnol. 5: 167-169 (1996)
  21. Wang H, Murphy PA. Isoflavone composition of American and Japanese soybeans in Iowa: Effects of variety, crop year and location. J. Agric. Food Chem. 42: 1674-1677 (1994) https://doi.org/10.1021/jf00044a017
  22. Lee IB, Choi KJ, Yu KK, Chang KW. Tocopherols and fatty acids in plant seeds from Korea. J. Korean Agric. Chem. Soc. 35: 1-5 (1992)
  23. Pratt DE, Birac PM. Sources of antioxidant activity of soybeans and soy products. J. Foods Sci. 44: 1720-1722 (1979) https://doi.org/10.1111/j.1365-2621.1979.tb09125.x
  24. Pratt DE, Pietro CD, Porter WL, Giffee JW. Phenolic antioxidants of soy protein hydrolyzates. J. Food Sci. 47: 24-25 (1981) https://doi.org/10.1111/j.1365-2621.1982.tb11018.x
  25. Seo A, Morr CV Improved high-performance liquid chromatographic analysis of phenolic acids. J. Agric. Food Chem. 32: 530-533 (1984) https://doi.org/10.1021/jf00123a028
  26. Kim YH. Antioxidant activity of various phenolic compounds in a soybean oil and a soybean oil-water emulsion system, MS thesis, Korea University, Seoul, Korea (1982)
  27. Lee GH, Kwon BK, Yim SY, Oh MJ. Phenolic compounds in sweet potatoes and their antioxidative activity. Korean J. Postharvest Sci. Technol. 7: 331-336 (2000)
  28. Ikeda N, Fukuzumi K. Synergistic antioxidant effect of nucleic acid and tocopherols. J. Am. Oil Chem. Soc. 54: 360-365 (1977) https://doi.org/10.1007/BF02802036