Differentiation of Four Major Gram-negative Foodborne Pathogenic Bacterial Genera by Using ERIC-PCR Genomic Fingerprinting

ERIC-PCR genomic fingerprinting에 의한 주요 식중독 그람 음성 세균 4속의 구별

  • Jung, Hye-Jin (Department of Food Science and Technology, Chung-Ang University) ;
  • Park, Sung-Hee (Department of Food Science and Technology, Chung-Ang University) ;
  • Seo, Hyeon-A (Department of Food Science and Technology, Chung-Ang University) ;
  • Kim, Young-Joon (Department of Food Science and Technology, Chung-Ang University) ;
  • Cho, Joon-Il (Department of Food Science and Technology, Chung-Ang University) ;
  • Park, Sung-Soo (Cheju Traditional Food Institute, Cheju Halla College) ;
  • Song, Dae-Sik (Shinwon Food Industry Co., Ltd.) ;
  • Kim, Keun-Sung (Department of Food Science and Technology, Chung-Ang University)
  • Published : 2005.12.31

Abstract

Widespread distributions of repetitive DNA elements in bacteria genomes are useful for analysis of genomes and should be exploited to differentiate food-borne pathogenic bacteria among and within species. Enterobacterial repetitive intergenic consensus (ERIC) sequence has been used for ERIC-PCR genomic fingerprinting to identify and differentiate bacterial strains from various environmental sources. ERIC-PCH genomic fingerprinting was applied to detect and differentiate four major Gram-negative food-borne bacterial pathogens, Esherichia coli, Salmonella, Shigella, and Vibrio. Target DNA fragments of pathogens were amplified by ERIC-PCR reactions. Dendrograms of subsequent PCR fingerprinting patterns for each strain were constructed, through which relative similarity coefficients or genetic distances between different strains were obtained numerically. Numerical comparisons revealed ERIC-PCR genotyping is effective for differentiation of strains among and within species of food-borne bacterial pathogens, showing ERIC-PCR fingerprinting methods can be utilized to differentiate isolates from outbreak and to determine their clonal relationships among outbreaks.

본 연구에서는 높은 분리능을 가지고 있을 뿐만 아니라 실험의 재현성과 경제성의 측면에서도 많은 장점을 갖고 있는 ERIC DNA sequence를 응용한 ERIC-PCR을 이용하여 Salmonella, E. coli, Shigella, Vibrio 등 4속의 주요 그람 음성 식중독유발 세균들의 분리 동정 방법을 확립하고자 하였다. ERIC-PCR 결과, E. coli의 경우 0.3kb, 0.42kb 및 1.2kb의 band가 모든 균주에서 공통적으로 확인되었고, Salmonella속으로부터는 0.22kb, 0.4kb 및 0.7kb의 band가 증폭되었다. Shigella속은 모든 표준균주와 분리균주로부터 0.33kb와 1.25kb의 band가 증폭되었으며, S. sonnei의 경우 위의 주요 2개 band 이외에도 대부분의 균주에서 0.44kb, 2.0kb 및 3.05kb의 band가 증폭되어 다른 종의 Shigella와 구별되는 fingerprinting pattern을 나타내었다. 그리고 V. parahaemolyticus의 경우 표준균주와 분리균주 모두 0.51kb와 1.5kb의 band가 증폭되어 V. cholerae, V. mimicus 등과 같은 다른 종의 Vibrio와 구별되는 fingerprinting pattern을 나타내었다. 이와 같이 4속의 모든 식중독 균주마다 ERIC-PCR후 생성되는 fingerprinting pattern에서 3-5개의 공통적인 band가 증폭되는 것이 확인되어 이를 이용한 속 수준의 분리 동정과 이러한 주요 band들 이외의 부수적인 band들을 고려하여 종 수준까지의 분리도 가능함을 확인하였다. 따라서 본 연구의 결과는 ERIC 반복적 DNA 염기서열을 이용한 ERIC-PCR이 식중독균의 분리 동정 방법으로 사용될 수 있음을 확인하였으며, 나아가 더 많은 속(genus)의 식중독세균을 대상으로 한 새로운 분리 동정 방법을 확립하는데도 응용이 될 수 있을 것이다.

Keywords

References

  1. Rajashekara G, Haverly E, Halvorson, DA, Ferris KE, Lauer DC, Nagaraja KV. Multidrug-resistant Salmonella typhimurium DT104 in poultry. J. Food Prot. 63: 155-161 (2000) https://doi.org/10.4315/0362-028X-63.2.155
  2. Johnson JR, Clabots C. Improved repetitive-element PCR fingerprinting of Salmonella enterica with the use of extremely elevated annealing temperatures. Clin. Diag. Lab. Immun. 7: 258-264 (2000)
  3. Dombek PE, Johnson LK, Zimmerley ST, Sadowsky MJ. Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources. Appl. Environ. Microbiol. 66: 2572-2577 (2000) https://doi.org/10.1128/AEM.66.6.2572-2577.2000
  4. Johnson JR, O'Bryan TT. Improved repetitive-element PCR fingerprinting for resolving pathogenic and nonpathogenic phylogenetic groups within Escherichia coli. Clin. Diag. Lab. Immun. 7: 265-273 (2000)
  5. Dalla-Costa LM, Irino K, Rodrigues J, Rivera ING, Trabulsi LR. Characterisation of diarrhoeagenic Escherichia coli clones by ribotyping and ERIC-PCR. J. Med. Microbiol. 47: 227-234 (1998) https://doi.org/10.1099/00222615-47-3-227
  6. Liu PYF, Lau YJ, Hu BS, Shyr JM, Shi ZY, Tsai WS, Lin YH, Tseng CY. Analysis of clonal relationships among isolates of Shigella sonnei by different molecular typing methods. J. Clin. Microbiol. 33: 1779-1783 (1995)
  7. Navia MM, Capitano L, Ruiz J, Vargas M, Urassa H, Schellemberg D, Gascon J, Vila J. Typing and characterization of mechanisms of resistance of Shigella spp. isolated from feces of children under 5 years of age from Ifakara, Tanzania. J. Clin. Microbiol. 37: 3113-3117 (1999)
  8. Clark CG, Kravetz AN, Dendy C, Wang G, Tyler KD, Johnson WM. Investigation of the 1994-5 Ukrainian Vibrio cholerae epidemic using molecular methods. Epidemiol. Infect. 121: 15-29 (1998) https://doi.org/10.1017/S0950268898008814
  9. Olsen JE, Aabo S, Hill W, Notermans S, Wernars K, Granum PE, Popovic T, Rasmussen HN, Olsvik O. Probes and polymerase chain reaction for detection of food-borne bacterial pathogens. Int. J. Food Microbiol. 28: 1-78 (1995) https://doi.org/10.1016/0168-1605(94)00159-4
  10. Olive DM, Bean P. Principles and applications of methods for DNA-based typing of microbial organisms. J. Clin. Microbiol. 37: 1661-1669 (1999)
  11. Hulton CS, Higgins CF, Sharp PM. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol. Microbiol. 5: 825-834 (1991) https://doi.org/10.1111/j.1365-2958.1991.tb00755.x
  12. Higgins CF, Ames GF, Barnes WM, Clement JM, Hofnung M. A novel intercistronic regulatory element of prokaryotic operons. Nature 298: 760-762 (1982) https://doi.org/10.1038/298760a0
  13. Martin B, Humbert O, Camara M, Guenzi E, Walker J, Mitchell T, Andrew P, Prudhomme M, Alloing G, Hakenbeck R. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res. 20: 3479-3483 (1992) https://doi.org/10.1093/nar/20.13.3479
  14. de Bruijn FJ. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol. 58: 2180-2187 (1992)
  15. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell Biol. 5: 25-40 (1994)
  16. Lupski JR, Weinstock GM. Short, interspersed repetitive DNA sequences in prokaryotic genomes. J. Bacteriol. 174: 4525-4529 (1992) https://doi.org/10.1128/jb.174.14.4525-4529.1992
  17. Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19: 6823-6831 (1991) https://doi.org/10.1093/nar/19.24.6823
  18. Li WH. Simple method for constructing phylogenetic trees from distance matrices. Proc. Natl. Acad. Sci. USA. 78: 1085-1089 (1981) https://doi.org/10.1073/pnas.78.2.1085
  19. Loubinoux J, Lozniewski A, Lion C, Garin D, Weber M, Le Faou AE. Value of enterobacterial repetitive intergenic consensus PCR for study of Pasteurella multocida strains isolated from mouths of dogs. J. Clin. Microbiol. 37: 2488-2492 (1999)
  20. Sander A, Ruess M, Bereswill S, Schuppler M, Steinbrueckner B. Comparison of different DNA fingerprinting techniques for molecular typing of Bartonella henselae isolates. J. Clin. Microbiol. 36: 2973-2981 (1998)
  21. Rajashekara G, Koeuth T, Nevile S, Back A, Nagaraja KV, Lupski JR, Kapur V. SERE, a widely dispersed bacterial repetitive DNA element. J. Med. Microbiol. 47:489-497 (1998) https://doi.org/10.1099/00222615-47-6-489
  22. Baldy-Chudzik K, Niedbach J, Stosik M. rep-PCR fingerptinting as a tool for the analysis of genomic diversity in Escherichia coli strains isolated from an aqueous/freshwater environment. Cell. Mol. Biol. Lett. 8: 793-798 (2003)
  23. Louws FJ, Fulbright DW, Stephens CT, de Bruijn FJ. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl. Environ. Microbiol. 60: 2286-2295 (1994)
  24. Burr MD, Josephson KL, Pepper IL. An evaluation of ERIC PCR and AP PCR fingerprinting for discriminating Salmonella serotypes. Lett. Appl. Microbiol. 27: 24-30 (1998) https://doi.org/10.1046/j.1472-765X.1998.00378.x
  25. Chmielewski R, Wieliczko A, Kuczkowski M, Mazurkiewicz M, Ugorski M. Comparison of ITS profiling, REP- and ERIC-PCR of Salmonella Enteritidis isolates from Poland. J. Vet. Med. 49: 163-168 (2002) https://doi.org/10.1046/j.1439-0450.2002.00544.x
  26. Wong HC, Lin CH. Evaluation of typing of Vibrio parahaemolyticus by three PCR methods using specific primers. J. Clin. Microbiol. 39: 4233-4240 (2001) https://doi.org/10.1128/JCM.39.12.4233-4240.2001
  27. Khan AA, McCarthy S, Wang RF, Cerniglia CE. Characterization of United States outbreak isolates of Vibrio parahaemolyticus using enterobacterial repetitive intergenic consensus (ERIC) PCR and development of a rapid PCR method for detection of O3:K6 isolates. FEMS Microbiol. Lett. 206: 209-214 (2002) https://doi.org/10.1111/j.1574-6968.2002.tb11011.x