The Concepts of Nanotoxicology and Risk Assessment of the Nanoparticles

나노 독성의 개념 및 나노입자에 대한 위해성 평가의 필요성

  • Maeng, Seung-Hee (Laboratory of Occupational Toxicology, Chemical Safety and Health Research Center, Occupational Safety & Health Research Institute, KOSHA) ;
  • Yu, Il-Je (Laboratory of Occupational Toxicology, Chemical Safety and Health Research Center, Occupational Safety & Health Research Institute, KOSHA)
  • 맹승희 (산업안전보건연구원 화학물질안전보건센터 독성연구팀) ;
  • 유일재 (산업안전보건연구원 화학물질안전보건센터 독성연구팀)
  • Published : 2005.06.01

Abstract

Human exposure to nano-sized particles (NSP) has increased over the last century with anthropogenic sources, and the rapid development of nanotechnology becomes an another source of such exposure. Information regarding the safety of nanotechnology and its product, nanoparticles, is urgently needed when assuming exposure through inhalation, oral intake, and penetration across skin is ever increasing as growing nanotechnology rapidly. The recent advancement of biokinetic studies with NSP and newer epidemiologic and toxicologic studies with ultrafine particles can be the basis for the nanotoxicology. Some concepts of nanotoxicology can be known from the results of these results. Specific small size of NSP, when inhaled, facilitates deposition by difusional mechanism in all regions of the respiratory tract and uptake into cells, ranscytosis across epithelial and endothelial cells into the blood and lymph circulation to reach target sites. Translocation along axons and dendrites of neuron makes an access to CNS and ganglia. These biokinetics are dependent on NSP surface chemistry. Risk assessments of NSP include appropriate and relevant doses/concentration selections, the increase effects in the organism and the benefits of possible desirable effects. An interdisciplinary team approach is desirable for nanotoxicology research and an appropriate risk assessment.

Keywords

References

  1. Amato, I. (1989): Making the right stuff. Science News, 136, 108-110 https://doi.org/10.2307/3973729
  2. ANSI (2004): American National Standards Institute. Available: http://ansi.org
  3. Berry, J.P., Arnoux, B., Stanislas, G., Galle, P. and Chretien, J. (1977): A microanalytic study of particles transport across the alveoli: Role of blood platelets. Biomed., 27, 354-357
  4. Bodian, D. and Howe, H.A. (1941): Experimental studies on intraneural spread of poliomyelitis virus. Bulletin of the Johns Hopkins Hospital., LXIX, 248-267
  5. Brown, D.M., Wilson, M.R., MacNee, W., Stone, V. and Donaldson, K. (2001): Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharm., 175, 191-199 https://doi.org/10.1006/taap.2001.9240
  6. de Lorenzo (1970): The olfactory neuron and the blood-brain barrier. In: Taste and smell in vertebrates (Wolstenholme G and Knight J., eds.). London: J. & A. Churchill, 151-176
  7. Donlin, M., Frey, R., Putnam, C., Proctor, J. and Bashkin, J. (1998): Analysis of iron in ferritin, the iron-storage protein. J. Chem. Educ., 75, 437-441 https://doi.org/10.1021/ed075p437
  8. European Community (2004): Nanotechnologies: A preliminary risk analysis on the basis of a workshop organized in Brussels on 1-2 March 2004 by the Health and Consumer Protection Directorate General of the European Commission (http://europa.eu.int/comm/health/ph_risk/event_ risk_en.htm)
  9. Evelyn, A. Mannick, S. and Sermon, P.A. (2003): Unusual carbon-based nanofibers and chairs among diesel-emitted particles. Nano Lett, 3, 63-64 https://doi.org/10.1021/nl025803u
  10. Greim, H., Borm, P., Schins, R., Dornaldson, K., Driscoll, K., Hartwig, A., Kuempel, E., Oberdbrster, G. and Speit, G. (2001): Toxicity of fibers and particles - report of the workshop held in Munich, Germany, 26-27. October 2000. Inhal. Tox., 13, 737-754
  11. Gumbleton, M. (2001): Caveolae as potential macromolecule trafficking compartments within alveolar epithelium. Adv. Drug. Deliv. Rev., 49, 281-300 https://doi.org/10.1016/S0169-409X(01)00142-9
  12. Hautot, D. Pankhurst, Q.A., Khan, N. and Dobson, J. (2003): Preliminary evaluation of nanoscale biogenic magnetite in Alzeimer's disease brain tissue. Proceedings of the Royal Society of London-Series B: Biol. Sci., 270(suppl. 1): S62-64 https://doi.org/10.1098/rsbl.2003.0012
  13. Heckel, K., Kiefmann, R., Dorger, M., Stoeckelhuber, M. and goetz, A.E. (2004): Colloidal gold particles as a new in vivo marker of early acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol., 287: L867-L878 https://doi.org/10.1152/ajplung.00078.2004
  14. Hoet, P.H.M., Bruske-Hohlfeld, I, and Salata, O.V. (2004): Nanoparticles - known and unknown health risks. J. Nanobiotechnol., 2:12, doi:10.1186/1477-3155-2-12
  15. Hughes, L.S., Cass, G.R., Gone, J., Ames, M. and Olmez, I. (1998): Physical and chemical characterization of atmospheric ultrafine particles in the Los Angeles area. Environ. Sci. Technol., 32, 1153-1161 https://doi.org/10.1021/es970280r
  16. Hunter, D.D. and Dey, R.D. (1998): Identification and neuropeptide content of trigeminal neurons innervating the rat nasal epithelium. Neurosci, 83, 591-599 https://doi.org/10.1016/S0306-4522(97)00324-2
  17. Hunter, D.D. and Undem, B.J. (1999): Identification and substance P content of vagal afferent neurons innervating the epithelium of the guinea pig trachea. Am. J. Respir. Cnt. Care Med., 159, 1943-1948 https://doi.org/10.1164/ajrccm.159.6.9808078
  18. IARC (2002): Man-made vitreous fibers. IARC Monogr. Eval. Carcinog. Risks Hum.
  19. ICON (2004): International Council on Nanotechnology. Available: http://icon.rice.edu
  20. Johnston, C.J. Finkelstein, J.N., Mercer, P., Corson, N., Gelein, Rand Oberdorster, G. (2000). PUlmonary effects induced by ultrafine PTFE particles. Toxicol. Appl. Pharmacol., 168, 208-215 https://doi.org/10.1006/taap.2000.9037
  21. Kato, T. Yahiro, T., Murata, Y., Herbert, D.C., Oxhikawa, K., Bando, M., Ohno, S. and Sugiyama, Y (2003): Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries. Cell Tiss. Res., 311, 47-51 https://doi.org/10.1007/s00441-002-0647-3
  22. Kirschvink, J., Walker, M. and Diebel, C. (2001): Magnetitebased magneto-reception. Curr. Opin. Neurobiol., 11, 462-468 https://doi.org/10.1016/S0959-4388(00)00235-X
  23. KISTI (2004): 나노기술정책동향 진단, Nano Weekly 128, pp. 2-3
  24. Kreuter, J., Shamenkov, D., Petrov, V., Ramge P., Cychutek, K., Koch-Brandt, C. and Alyautdin, R (2002): Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J. Drug Target, 10, 317-325 https://doi.org/10.1080/10611860290031877
  25. Kreuter, J. (2004): Influence of the surface properties on nanoparticle-mediated transport of durgs to the brain. J. Nanosci. Nanotech., 4, 484-488 https://doi.org/10.1166/jnn.2003.077
  26. Kreyling, W.G., Semmler, M., Erbe, F., Mayer P., Takenata, S., Schulz, H., Oberdoster, G. and Ziesenis, A. (2002): Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Tax & Environ. Health, 65, 1513-1530 https://doi.org/10.1080/00984100290071649
  27. Kulmara, M. (2004): Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aerosol Sci., 35, 143-176 https://doi.org/10.1016/j.jaerosci.2003.10.003
  28. Li, X., Brown, D., smith, S., MacNee, W. and Donardson, K. (1999): Short-term inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhal. Tox., 11, 709-731 https://doi.org/10.1080/089583799196826
  29. Li, N., Siotas, C., Cho, A., Schmitz, D., Mistra, C., Semplf, J., Wang, M., Oberly, T., Froines, J. and Nel. A. (2003): Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Persp., 111, 455-460 https://doi.org/10.1289/ehp.6000
  30. Maynard, A.D., Baron, P.A., Foley, M., Shvedova, A.A., Kisin, E.R. and Castranova, V. (2004): Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health, Part A, 67: 87-107 https://doi.org/10.1080/15287390490253688
  31. NNI (2004): What is Nanotechnology? Available:http://www.nano.gov/html/facts/whatlsNano.html
  32. NRC (1983): Risk assessment in the federal government: managing the process. Commission on Life Sciences. National Research Council. Washington, D.C. : National Academy Press
  33. Oberdorster, G., Ferin, J., Wade P. and Corson, N. (1990): Increased pulmonary toxicity of ultrafine particles? II. Lung Lavage Studies., 21, 384-387
  34. Oberdorster, G. (1994): Extrapolation of results from animal inhalation studies with particles to humans? In: Toxic and Carcinogenic Effects of Solid Particles in the Respiratory Tract (eds. Dungworth, Mauderly and Oberdorster). ILSI Monographs, V. Mohr, editor-in-chief, ILSI Press, Washington, D.C., pp. 335-353
  35. Oberdorster, G., Gelein, R.M., Ferin, J. and Weiss, B. (1995): Association of particulate air pollution and acute morality: Involvement of ultrafine particles? Inhal. Tox., 7, 111-124 https://doi.org/10.3109/08958379509014275
  36. Oberdorster, G (2000): Toxicology of ultrafine particles: in vivo studies. Phil. Trans. R. Soc. Lond. A., 358, 2719-2740 https://doi.org/10.1098/rsta.2000.0680
  37. Oberdorster, E. (2004): Manufactured nanomaterials (fulIerenes, C60) induce oxidative stress in brain of juvenile largemouth bass. Environmental Health Perspectives, 112, 1058-1062 https://doi.org/10.1289/ehp.7021
  38. Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W. and Cox. C. (2004): Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol., 16, 437-445 https://doi.org/10.1080/08958370490439597
  39. Oberdorster, G., Oberdorster, E. and Oberdorster, J. (2005): Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives. available
  40. Penttinen, .P, Timonen, K.L., Tittanen, P., Mirme, A., Ruuskanen, J. and Pekkanen, J. (2001): Ultrafine particles in urban air and respiratory health among adult asthmatics. Eur. Resp. J., 17, 428-435 https://doi.org/10.1183/09031936.01.17304280
  41. Peters, A., Doring, A., Wichmann, H.-E. and Koenig, W. (1997a): Increased plasma viscosity during an air pollution episode: a link to mortality? Lancet, 349, 1582-1587 https://doi.org/10.1016/S0140-6736(97)01211-7
  42. Peters, A., Wichmann, H.E., Tuch, T. and Heinrich, J. (1997b): Respiratory effects are associated with the number of ultrafine particles, Am. Respir. Crit. Care Med., 155, 1376-1383 https://doi.org/10.1164/ajrccm.155.4.9105082
  43. Rejman, J., Oberle, V, Zuhorn, I.S. and Hoekstra, D. (2004): Size-dependent internalization of particles via the pathways of c1athrin-and caveolae-mediated endocytosis. Biochem. J, 377, 159-169 https://doi.org/10.1042/BJ20031253
  44. Rosei, F. (2004): Nanostructure surfaces: challenges and frontiers in nanotechnology. J Phys. Condens. Matter, 16, S1373-S1436 https://doi.org/10.1088/0953-8984/16/17/001
  45. Schultheiss-Grassi, P.P., Wessiken, R. and Dobson, J. (1999). TEM investigations of biogenic magnetite extracted from the human hippocampus. Biochim. Biophys. Acta, 1426, 212-216 https://doi.org/10.1016/S0304-4165(98)00160-3
  46. Semmler, M., Seitz., J., Erbe, F., Mayer, P., Heyder, J., Oberdorster, G. and Kreyling, W.G. (2004): Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal. Tox., 16, 453-459 https://doi.org/10.1080/08958370490439650
  47. Shvedova, A.A., Kisin, E., Keshava, N., Murray, A.R., Gorelik, O. and Arepalli, S. (2004): Cytotoxic and genotoxic effects of single wall carbon nanotube exposure on human keratinocytes and bronchial epithelial cells. American Chemistry Society March 27-April 1, 2004, Anaheim, CA, IEC 20
  48. Tran, C.L., Buchanan, D., Cullen, R.T., Searrl, A., Jones, A.D. and Donaldson, K. (2000): Inhalation of pooly soluble particles. II Influence of particle surface area on inflammation and clearance. Inhal. Tox., 12, 1113-1126 https://doi.org/10.1080/08958370050166796
  49. U.S. EPA (2004): Air quality criteria for particulate matter (Vol. III) 600/P-95-001cF. Washington, DC 20460: Office of Research and Development
  50. Utell, M., Frampton, M., Zareba, W., Devlin, R. and Cascio, W. (2002): Cardiovascular effects associated with air pollution : Potential mechanisms and methods of testing. Inhal. Tox., 14, 1231-1247 https://doi.org/10.1080/08958370290084881
  51. von Klot, S., Wolke, G., Tuch, T., Heinrich, J. Dockery, D.W., Schwartz, J., Kreyling, WG, Wichmann, H.E. and Peter, A. (2002): Increased asthma medicaton use in association with ambient fine and ultrafine particles. Eur. Respir. J., 20, 691-702 https://doi.org/10.1183/09031936.02.01402001
  52. Warheit, D.B., Overby, L.H. George, G. and Brody, A.R. (1988): Pulmonary macrophages are attracted to inhaled particles on alveolar surfaces. Exp. Lung Res., 14, 51-66 https://doi.org/10.3109/01902148809062850
  53. Warheit, O.B., Laurence, B.R., Reed, K.L., Roach, P.H., Reynolds, G.A.M. and Webb, T.R. (2004): Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Tax. Sci., 77, 117-125 https://doi.org/10.1093/toxsci/kfg228
  54. WHO (1985): References methods for measuring airborne man-made mineral fibers (Environmental Health Series 4). Copenhagen: World Health Organization
  55. Wichmann, H.E., Spix, C., Tuch, T., Wolke, G., Peters, A., Heinrich, J. Kreyling, W.G. and Heyder, J. (2000): Daily mortality and fine and ultrafine particles in Erfurt, Germany. Part I: role of particle number and particle mass HEI Research Report No. 98: Health Effects Institute, Boston, M.A