Effects of Packing Materials, tight Condition and Storage Temperature on MAP Storage of Chicon

MAP저장시 포장재 종류, 광의 유무, 및 저장온도가 치콘 저장성에 미치는 영향

  • Bae Jong Hyang (Division of Horticlture and Pet Animal-Plant Science, Wonkwang Univ.,) ;
  • Park Kuen Woo (Division of Bioscience and Technology, Korea Univ.,) ;
  • Kang Ho-Min (Dept. of Horticulture, Kangwon Nat. Univ.,)
  • Published : 2005.06.01

Abstract

The storability of chicon was compared by packing it with PE box, wrap, LDPE (low density polyethylene) film that was 25 and 50um thickness, respectively and storing at 1 and $10^{\circ}C$ under light and dark conditions. The visual quality depending on dehydration was deteriorated at more than $2\%$ weight loss during storage. In packing treatments, chicon packed with PE box lost fresh weight to $3\%\;at\;10^{\circ}C\;and\;2\%\;at\;1^{\circ}C$, while non- penetrated film treatment, wrap, 25 and 50um thickness LDPE film, showed less than $1\%$ weight loss. The carbon dioxide concentration in package was $3\~4\%\;in\;50{\mu}m$ LDPE film at $1^{\circ}C\; and\;25um$ LDPE film at $10^{\circ}C$. The ethylene concentration in 50um LDPE film at $1^{\circ}C\;and\;25{\mu}m$ LDPE film at $10^{\circ}C$ was approximately 0.3 ppm and 0.5 ppm, respectively. Chiton stored in dark condition didn't turn to green, but it fumed green only in 3 days at $10^{\circ}C$ and in 6 days at $1^{\circ}C$ under light condition. The greening of chicon was less, the packing materials was thicker. The chlorophyll content represented the degree of greening showed less at $1^{\circ}C$ then at $10^{\circ}C$. The coefficient of correlation(r) between chlorophyll content and carbon dioxide concentration in package was 0.926 at $1^{\circ}C$ and 0.997 at $10^{\circ}C$. The visual quality except greening of packed chicon was maintained at $1^{\circ}C$ better than $10^{\circ}C$, and it was shown highest grade packed with $50{\mu}m$ LDPE film at $1^{\circ}C$ and packed with 25um LDPE film at $10^{\circ}C$. The vitamin C content in packed chicon was kept higher at $1^{\circ}C$ on storage temperatures, and 25um and 50um LDPE film on packing materials. According to these results, it can be proper condition for storage and marketing of chicon that 50um LDPE film at $1^{\circ}C$ and 25um LDPE film at $10^{\circ}C$. And dark condition is necessary to store chicon because it should turn green under tiny light condition.

PE box, wrap, 그리고 25um와 50um 두께의 LDPE(low density polyethylene) 필름으로 포장한 치콘을 저장온도 $1^{\circ}C$$10^{\circ}C$에서 광조건과 암조건으로 나누어 저장성을 비교하였다. 치콘의 저장 중 생체중 감소는 $2\%$ 수준에서 외관상 품질 저하가 발생하였는데, 밀폐되지 않는 PE box의 경우 $1^{\circ}C$에서는 $2\%$, $10^{\circ}C$에서는 $3\%$의 생체중 감소를 보였다. 이에 반해 무공필름이었던 wrap, 그리고 25um와 50um 두께의 LDPE(low density polyethylene) 필름에서는 $1^{\circ}C$$10^{\circ}C$ 모두에서 $1\%$미만의 감소를 나타내었다. 포장재내 공기 조성은 이산화탄소의 경우 $1^{\circ}C$의 50um LDPE 필름과 10"C에서는 25um LDPE 필름 처리구가 $3\~4\%$ 수준을 보였다. 에틸렌은 가장 높은 함량을 보인 50um LDPE 필름에서 온도별로 $1^{\circ}C$에서 0.3ppm, $10^{\circ}C$에서는 0.5ppm으로 낮은 수준을 보였다. 저장중 greening은 암처리에서는 나타나지 않았으나 광처리의 경우는 $10^{\circ}C$에서는 저장 3일만에 $1^{\circ}C$의 경우도 6일만에 판매하기 곤란한 상태까지 진전되었는데, $1^{\circ}C$의 경우 포장재 종류별로 포장재가 두꺼울수록 greening의 진행이 지연되는 경향을 보였다. Greening을 수치화 할 수 있는 엽록소 함량은 역시 저장온도가 낮은 $1^{\circ}C$$10^{\circ}C$보다 낮았고, 역시 이산화탄소 농도가 가장 높았던 50um LDPE필름에서 가장 낮은 함량을 보였는데 포장재 내부의 이산화탄소 함량과 총 엽록소 함량과의 상관관계를 조사한 결과 상관계수(r)가 $1^{\circ}C$에서 0.926 $10^{\circ}C$에서는 0.997로 고도의 상관이 있음을 알 수 있었다. Greening을 제외한 외관상 품질은 저온인 $1^{\circ}C$에서 높게 유지되었고 포장재별로는 $1^{\circ}C$에서는 50um LDPE 필름이 $10^{\circ}C$에서는 25um LDPE필름에서 가장 높은 점수를 나타내었다. 비타민 C 함량도 저온에서 높게 유지되었으며 필름종류별로는 25um와 50um LDPE 필름에서 가장 높았다. 이상의 결과로 보아 치콘의 저장 및 유통시 $1^{\circ}C$에서는 50um LDPE 필름이 $10^{\circ}C$에서는 25um LDPE 필름이 포장재로 적합한 것으로 사료된다. 또한 약간의 빛으로 greening이 급격히 진행되므로 판매과정에서 암조건을 유지하는 것이 필요하리라 생각된다.

Keywords

References

  1. AOAC. 1995. Vitamin C(total) in vitamin preparations. AOAC official methods of analysis. 2:967.22
  2. Buchanan B.B., W. Gruissem, R.L. Jones. 2000. Biochemistry and Molecular Biology of Plants. p. 576-577. Amer. Soc. of Plant Physiologists. Rockvile MD
  3. De Proft, M., J. De Greef, K. Van Nerum, and G. Goffings. 1986. Ethylene in the production of Belgian endive. HortScience 21: 1132-1133
  4. Hardenburg, R.E., A.E. Watada, and C.Y. Wang. 1986. The commercial storage of fruits, vegetables, and florist and nursery stocks. p. 136. USDA Agric. Handbook No 66
  5. Herredogs, M. 1971. The effect of some factors on witloof during storage. Acta Hort. 20:36-42
  6. Inskeep, W.P. and P.R. Bloom. 1985. Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol. 77:483-485 https://doi.org/10.1104/pp.77.2.483
  7. Kang, H.M. and K.W. Park. 2000. Comparison of storability on film sources and storage temperature for oriental melon in modified atmosphere storage. J. Kor. Soc. Hort. Sci. 41:143-146
  8. Kader, A.A. 2002. Postharvest technology of horticultural crops third edition. University of California, Division of Agricultural and Natural Resources, California
  9. Kays, J.S. 1991. Postharvest physiology of perishable plant products. p. 106-108, p.356-358. AVI Publishing, New York
  10. Park. K.W. 1994. Western vegetables. P.274. Korea Univ. Press. Seoul. Korea
  11. Rubatzky, V. and M.E. Saltveit. 2004. Chicory. In The commercial storage of fruit, vegetable, and florist and nursery stocks (Agricultural Handbook Number 66). eds. Gross K.C., C.Y. Wang, and M.E. Saltveit. Beltsviii, MD
  12. Ryder, E.J. 1979. Endive and chicory. In: Leafy salad vegetables. p.171-194. AVI Publishing, Westport CT