Purification and Characterization of Quercitrin-Hydrolyzing ${\alpha}$-L-Rhamnosidase from Fusobacterium K-60, a Human Intestinal Bacterium

  • Published : 2005.06.01

Abstract

An ${\alpha}$-L-rhamnosidase (EC 3.2.1.40.), which transforms quercitrin to quercetin, was purified from Fusobacterium K-60, a human intestinal anaerobic bacterium. The specific activity of the purified ${\alpha}$-L-rhamnosidase was 2.89 mol/min/mg protein. ${\alpha}$-L-Rhamnosidase, whose molecular size was 170 kDa by gel filtration, was composed of four subunits ($M_r$ 41,000 Da) with pI and optimal pH values of 5.2 and 5.5-7.0, respectively. The apparent $K_m$ and $V_{max}$ values for p-nitrophenyl-${\alpha}$-L-rhamnopyranoside and quercitrin were determined to be 0.057 mM and 3.4 mol/min/mg, and 0.077 mM and 5.0 mol/min/mg, respectively. This enzyme was strongly inhibited by $Cu^{2+},\;Mn^{2+}$, L-rhamnose, and p-chlormercuriphenylsulfonic acid. These findings suggest that the biochemical properties and substrate specificity of the purified enzyme are different from those of the previously purified ${\alpha}$-L-rhamnosidase. This is the first reported purification of quercitrin-hydrolyzing ${\alpha}$-L-rhamnosidase from intestinal bacteria.

Keywords

References

  1. Akao T., H. Kida, M. Kanaoka, M. Hattori, and K. Kobashi. 1988. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J. Pharm. Pharmacol. 50: 1155-1160
  2. Bae, E.-A., M. J. Han, K. T. Lee, J. W. Choi, H. J. Park, and D.-H. Kim. 1999. Metabolism of 6''-O-xylosyltectoridin and tectoridin by human intestinal bacteria and their hypoglycemic and in vitro cytotoxic activities. Biol. Pharm. Bull. 22: 1314-1318 https://doi.org/10.1248/bpb.22.1314
  3. Bae, E.-A., M. J. Han, M.-J. Song, and D.-H. Kim. 2002. Purification of rotavirus infection-inhibitory protein from Bifidobacterium breve K-110. J. Microbiol. Biotechnol. 12: 553-556
  4. Bae, E.-A., N.-Y. Kim, M. J. Han, M.-K. Choo, and D.-H. Kim. 2003. Transformation of ginsenosides to compound K (IH-901) by lactic acid bacteria of human intestine. J. Microbiol. Biotechnol. 13: 9-14
  5. Bokkenheuser, V. D., H. L. Shackleton, and J. Winter. 1987. Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem. J. 248: 953-956 https://doi.org/10.1042/bj2480953
  6. Bourbouse, R., F. Percheron, and J. E. Courtois. 1976. ${\alpha}$-L-Rhamnosidase of Fagoferum esculentum. Eur. J. Biochem. 63: 331-337 https://doi.org/10.1111/j.1432-1033.1976.tb10234.x
  7. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-251 https://doi.org/10.1016/0003-2697(76)90527-3
  8. Jang, I.-S. and D.-H. Kim. 1996. Purification and characterization of ${\alpha}$-L-rhamnosidase from Bacteroides JY-6, a human intestinal bacterium. Biol. Pharm. Bull. 19: 1546-1549 https://doi.org/10.1248/bpb.19.1546
  9. Jeon, K. S., G. E. Ji, and I. K. Hwang. 2002. Assay of ${\beta}$-glucosidase activity of bifidobacteria and the hydrolysis of isoflavone glycosides by Bifidobacterium sp. Int-57 in soymilk fermentation J. Microbiol. Biotechnol. 12: 813
  10. Ji, J.-H., J.-S. Yang, and J.- W Hur. 2003. Purification and characterization of the exo-${\beta}$-D-glucosaminidase from Aspergillus flavus IAM2044. J. Microbiol. Biotechnol. 13: 269-275
  11. Kaji, A. and T. Ichimi. 1973. ${\alpha}$-L-Rhamnosidase activity in culture filtrate of Corticium rolfsii. Agr. Biol. Chem. 37: 431-432 https://doi.org/10.1271/bbb1961.37.431
  12. Kim, D.-H., I.-S. Jang, N. J. Kim, and W.-G. Yoon. 1994. Metabolism of poncirin and naringin by human intestinal bacteria. Yakhak Hoeji 38: 286-292
  13. Kim, D.-H., S.-Y. Kim, S.-Y. Park, and M. J. Han. 1999. Metabolism of quercitrin by human intestinal bacteria and its relation to some biological activities. Biol. Pharm. Bull. 22: 749-751 https://doi.org/10.1248/bpb.22.749
  14. Kim, D. H. 2002. Herbal medicines are activated by intestinal microflora. Nat. Prod. Sci. 8: 35-43
  15. Kobashi, K. and T. Akao. 1997. Relation of intestinal bacteria to pharmacological effects of glycosides. Bifidobacteria Microflora 16: 1-7
  16. Kurosawa, Y., K. Ikeda, and F. Egami. 1993. ${\alpha}$-L-Rhamnosidase of the liver of Turbo cornutus and Aspergillus niger. J. Biochem. 73: 31-37
  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  18. Manzanares, P., H. Brock, L. H. de Graaff, and J. Visser. 2001. Purification and characterization of two different ${\alpha}$-L-rhamnosidases, RhaA and RhaB, from Aspergillus aculeatus. Appl. Environ. Microbiol. 67: 2230-2234 https://doi.org/10.1128/AEM.67.5.2230-2234.2001
  19. Manzanares, P., L. H. de Graaff, and J. Visser. 1997. Purification and characterization of an ${\alpha}$-L-rhamnosidases from Aspergillus niger. FEMS Microbiol. Lett. 157: 279-283 https://doi.org/10.1016/S0378-1097(97)00487-4
  20. Michon, F., V. Pozsgay, J. R. Brisson, and H. J. Jenning. 1989. Substrate specificity of naringinase, a ${\alpha}$-L-rhamnosidase from Penicillium decumbens. Carbohydrate Res. 194: 321-326 https://doi.org/10.1016/0008-6215(89)85033-5
  21. Okada, S., K. Kishi, M. Tohara, and J. Fukumoto. 1963. Purification and characterization of ${\alpha}$-L-rhamnosidase T and N from Aspergillus niger. J. Agrie. Chem. Soc. Japan 37: 84-89
  22. Wakabayashi, C., H. Hasegawa, J. Murata, and J. Saiki. 1998. In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol. Res. 9: 411-417