Identification and Characterization of the Vibrio vulnificus malPQ Operon

  • LIM MOON SUB (Department of Food Science and Technology, and School of Agricultural Biotechnology, Center for Agricultural Biomaterials, Seoul National University) ;
  • LEE MYUNG HEE (Department of Food Science and Technology, Department of Molecular Biotechnology, Institute of Biotechnology, Chonnam National University) ;
  • LEE JEONG HYUN (Department of Food Science and Technology, Department of Molecular Biotechnology, Institute of Biotechnology, Chonnam National University) ;
  • JU HYUN-MOK (Department of Food Science and Technology, Department of Molecular Biotechnology, Institute of Biotechnology, Chonnam National University) ;
  • PARK NA YOUNG (Department of Food Science and Technology, and School of Agricultural Biotechnology, Center for Agricultural Biomaterials, Seoul National University) ;
  • JEONG HYE SOOK (Department of Food Science and Technology, and School of Agricultural Biotechnology, Center for Agricultural Biomaterials, Seoul National University) ;
  • RHEE JEE EUN (Department of Food Science and Technology, and School of Agricultural Biotechnology, Center for Agricultural Biomaterials, Seoul National University) ;
  • CHOI SANG HO (Department of Food Science and Technology, and School of Agricultural Biotechnology, Center for Agricultural Biomaterials, Seoul National University)
  • Published : 2005.06.01

Abstract

It is likely that maltose could provide a good substrate for the bacteria in the intestine, when the pathogenic bacteria invade and colonize in human gut. For better understanding of this organism's maltose metabolism, a mutant that was not able to grow with maltose as a sole carbon source was screened from a library of mutants constructed by a random transposon mutagenesis. By a transposon-tagging method, malPQ genes encoding a maltodextrin phosphorylase and a 4-${\alpha}$-glucanotransferase, were identified and cloned from Vibrio vulnificus. The deduced amino acid sequences of malPQ from V. vulnificus were 48 to $91\%$ similar to those of MalP and MalQ reported from other Enterobacteriaceae. Functions of malPQ genes were assessed by the construction of mutants whose malPQ genes were inactivated by allelic exchanges. When maltose was used as the sole carbon source, neither malP nor malQ mutant was able to grow to a substantial level, revealing that the MalP and MalQ are the only enzymes for metabolic utilization of maltose. The malQ mutant exhibited decreased adherence toward intestinal epithelial cells in vitro, but there was no difference in the $LD_{50}s$ of the wild-type and the malQ mutant in mice. Therefore, it appears that MalQ is less important in the pathogenesis of V. vulnificus than would have been predicted by considering maltose as a most common sugar in the intestine, but not completely dispensable for virulence in mice.

Keywords

References

  1. Boos, W. and H. Shuman. 1998. Maltose/maltodextrin system of Escherichia coli: Transport, metabolism, and regulation. Microbiol. Mol. Biol. Rev. 62: 204-229
  2. Boos, W. and J. M. Lucht. 1996. Periplasmic binding protein-dependent ABC transporter, pp. 1175-1209. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd Ed. American Society for Microbiology, Washington, D.C., U.S.A
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. DeLorenzo, V., M. Herrero, U. Jakubzik, and K. Timmis. 1990. Mini- Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J. Bacteriol. 172: 6568-6572 https://doi.org/10.1128/jb.172.11.6568-6572.1990
  5. Donnenberg, M. S. and J. B. Kaper. 1991. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect. Immun. 59: 4310-4317
  6. Jeong, H. S., J. E. Rhee, J. H. Lee, H. K. Choi, D. I. Kim, M. H. Lee, S. J. Park, and S. H. Choi. 2003. Identification of lrp and its influence on survival under various stresses. J. Microbiol. Biotechnol. 13: 159-163
  7. Jeong, H. S., K. C. Jeong, H. K. Choi, K. J. Park, K. H. Lee, J. H. Rhee, and S. H. Choi. 2001. Differential expression of Vibrio vulnificus elastase gene in a growth phase-dependent manner by two different types of promoters. J. Biol. Chem. 276: 13875-13880 https://doi.org/10.1074/jbc.M010567200
  8. Jeong, K. C., H. S. Jeong, J. H. Rhee, S. E. Lee, S. S. Chung, A. M. Starks, G. M. Escudero, P. A. Gulig, and S. H. Choi. 2000. Construction and phenotypic evaluation of a Vibrio vulnificus vvpE mutant for elastolytic protease. Infect Immun. 68: 5096-5106 https://doi.org/10.1128/IAI.68.9.5096-5106.2000
  9. Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1988. Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70: 191-197 https://doi.org/10.1016/0378-1119(88)90117-5
  10. Kim, H. J., J. H. Lee, J. E. Rhee, H. S. Jeong, H. K. Choi, H. J. Chung, S. Ryu, and S. H. Choi. 2002. Identification and functional analysis of the putAP genes encoding Vibrio vulnificus proline dehydrogenase and proline permease. J. Microbiol. Biotechnol. 12: 318-326
  11. Kim, J., J. G. Kim, B. K. Park, O. Choi, C. H. Park, and I. Hwang. 2003. Identification of genes for biosynthesis of antibacterial compound from Pseudomonas fluorescens B16, and its activity against Ralstonia solanacearum. J. Microbiol. Biotechnol. 13: 292-300
  12. Lang, H., G. Jonson, J. Holmgren, and E. T. PaIva. 1994. The maltose regulon of Vibrio cholerae affects production and secretion of virulence factors. Infect. Immun. 62: 4781-4788
  13. Lee, B. C., S. H. Choi, and T. S. Kim. 2004. Sulforhodamine B assay for determining cytotoxicity of Vibrio vulnificus against human intestinal cells. J. Microbiol. Biotechnol. 14: 350-355
  14. Lee, J. H., N. Y. Park, S.-J. Park, and S. H. Choi. 2003. Identification and characterization of the Vibrio vulnificus phosphomannomutase gene. J. Microbiol. Biotechnol. 13: 149-154
  15. Linkous, D. A. and J. D. Oliver. 1999. Pathogenesis of Vibrio vulnificus. FEMS Microbiol. Lett. 174: 207-214 https://doi.org/10.1111/j.1574-6968.1999.tb13570.x
  16. Miller, V. L. and J. J. Mekalanos. 1988. A novel suicide vector and its use in construction of insertion mutations: Osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170: 2575-2583 https://doi.org/10.1128/jb.170.6.2575-2583.1988
  17. Oka, A., H. Sugisaki, and M. Takanami. 1981. Nucleotide sequence of the kanamycin resistance transposon Tn903. J. Mol. Biol. 147: 217-226 https://doi.org/10.1016/0022-2836(81)90438-1
  18. Paranjpye R. N., J. C. Lara, J. C. Pepe, C. M. Pepe, and M. S. Strom. 1998. The type IV leader peptidase/N-methyltransferase of Vibrio vulnificus controls factors required for adherence to HEp-2 cells and virulence in ironoverloaded mice. Infect. Immun. 66: 5659-5668
  19. Reed, L. J. and H. Muench. 1938. A simple method of estimating fifty percent endpoints. Am J. Hyg. 27: 439-497
  20. Rhee, J. E., J. H. Lee, H. S. Jeong, U. Park, D. H. Lee, G. J. Woo, S. I. Miyoshi, and S. H. Choi. 2003. Evidence that temporally alternative expression of the Vibrio vulnificus elastase prevents proteolytic inactivation of hemolysin. J. Microbiol. Biotechnol. 13: 1021-1026
  21. Rhee, J. E., J. H. Rhee, P. Y. Ryu, and S. H. Choi. 2002. Identification of the cadBA operon from Vibrio vulnificus and its influence on survival to acid stress. FEMS Microbiol. Lett. 208: 245-251 https://doi.org/10.1111/j.1574-6968.2002.tb11089.x
  22. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A
  23. Staskawicz, B., D. Dahlbeck, K. Keen, and C. Napoli. 1987. Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J. Bacteriol. 169: 5789-5794 https://doi.org/10.1128/jb.169.12.5789-5794.1987
  24. Strom, M. S. and R. N. Paranjpye. 2000. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect. 2: 177-188 https://doi.org/10.1016/S1286-4579(00)00270-7
  25. Wright, A. C., L. M. Simpson, J. D. Oliver, and J. G. Morris, Jr. 1990. Phenotypic evaluation of acapsular transposon mutants of Vibrio vulnificus. Infect. Immun. 58: 1769-1773
  26. Xavier, K. B., R. Peist, M. Kossmann, W. Boos, and H. Santos. 1999. Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: Purification and characterization of key enzymes. J. Bacteriol. 181: 3358-3367