Antimicrobial Activity of Quinoline Derivatives Isolated from Ruta chalepensis Toward Human Intestinal Bacteria

  • CHO JANG-HEE (Research Center for Industrial Development of Biofood Materials and Faculty of Biotechnology, College of Agriculture & Life Science, Chonbuk National University) ;
  • LEE CHI-HOON (Research Center for Industrial Development of Biofood Materials and Faculty of Biotechnology, College of Agriculture & Life Science, Chonbuk National University) ;
  • LEE HOI-SEON (Research Center for Industrial Development of Biofood Materials and Faculty of Biotechnology, College of Agriculture & Life Science, Chonbuk National University)
  • Published : 2005.06.01

Abstract

The growth responses of Ruta chalepensis leaf-derived materials toward human intestinal bacteria were examined. The biologically active constituent of the R. chalepensis extract was characterized as quinoline-4-carboxaldehyde($C_{10}H_{7}NO$). The growth responses varied depending on the bacterial strain, chemicals, and dose tested. At 0.25 and 0.1 mg/disk, quinoline-4-carboxaldehyde strongly inhibited the growth of Clostridium perfringens and weakly inhibited the growth of Escherichia coli without any adverse effects on the growth of three lactic acid bacteria. Furthermore, at 0.05 and 0.025 mg/disk, this isolate showed moderate activity against C. perfringens. In comparison, chloramphenicol at as low as 0.01 mg/disk significantly inhibited the growth of all bacteria tested, and cinnamaldehyde at 0.25 mg/disk did not inhibit Bifidobacterium bifidum, B. longum, E. coli, and Lactobacillus acidophilus, with the exception of C. perfringens. The structure-activity relationship revealed that quinoline-3-carboxaldehyde had strong growth inhibition against C. perfringens, but quinoline, quinoline-3-carboxylic acid, and quinoline-4-carboxylic acid did not inhibit the growth of B. bifidum, B. longum, C. perfringens, E. coli, and L. acidophilus. These results indicate that the carboxyl aldehyde functional group of quinolines seems to be required for growth-inhibiting activity against C. perfringens, thus indicating at least one of the pharmacological actions of R. chalepensis leaf.

Keywords

References

  1. Benno, Y. 1990. Effect of diets on human fecal microflora. Bifidus 4: 1-8
  2. Black, F., K. Einarsson, A. Lidbeak, K. Orrhage, and C. E. Nord. 1991. Effect of lactic acid producing bacteria on the human intestinal microflora during ampicillin treatment. Scand. J. Infect. Dis. 23: 247-254 https://doi.org/10.3109/00365549109023408
  3. Ghazanfar, S. A. 1994. Handbook of Arabian Medicinal Plants, pp. 190. CRC Press: Boca Raton, FL
  4. Granum, P. E. 1990. Clostridium perfringens toxins involved in food poisoning. Int. J. Food Microbiol. 10: 101-112 https://doi.org/10.1016/0168-1605(90)90059-E
  5. Guandalini, S., L. Pensabene, M. A. Zikri, J. A. Dias, L. G. Casail, H. Hoekstra, S. Kolacek, K. Massar, D. MiceticTurk, A. Papadopoulou, J. S. Sousa, B. Sandhu, H. Szajewska, and Z. Weizman. 2000. Lactobacillus GG administered in oral rehydration solution to children with acute diarrhea: A multicenter European trial. J. Pediatr. Gastroenterol. Nutr. 30: 54-60 https://doi.org/10.1097/00005176-200001000-00018
  6. Hwang, Y. H. and H. S. Lee. 2002. Antibacterial activity of Pinus densiflora leaf-derived components toward human intestinal bacteria. J. Microbiol. Biotechnol. 12: 610-616
  7. Kim, J. D., H. Y. An, J. H. Yoon, Y. H. Park, F. Kawai, C. M. Jung, and K. H. Kang. 2002. Identification of Clostridium perfringens AB&J and its uptake of bromophenol blue. J. Microbiol. Biotechnol. 44: 544-552
  8. Kim, M. J., S. H. Lee, J. H. Cho, M. K. Kim, and H. S. Lee. 2003. Growth-responses of seven intestinal bacteria against Phellodendron amurense root-derived materials. J. Microbiol. Biotechnol. 13: 522-528
  9. Lee, H. S. 2003. Inhibitory effects of quinizarin isolated from Cassia tora seeds against human intestinal bacteria and aflatoxin $B_1$ biotransformation. J. Microbiol. Biotechnol. 13: 529-536
  10. Lee, H. S. and Y. J. Ahn. 1998. Growth-inhibiting effects of Cinnamomum cassia bark-derived materials on human intestinal bacteria. J. Agric. Food Chem. 46: 8-12 https://doi.org/10.1021/jf970548y
  11. Malinckrodt Chemicals, 2002. Material Safety Data Sheet, Toxicological information MSDS N0090, Mallinckrodt Baker. Inc
  12. Mallett, A. K., I. R. Rowland, C. A. Bearne, J. C. Flynn, B. J. Fehilly, S. Udeen, and M. J. G. Farthing. 1988. Effect of dietary supplements of apple pectin, wheat bran or fat on the enzyme activity of the human faecal flora. Microbiol. Ecol. Health Dis. 1: 23-32 https://doi.org/10.3109/08910608809140175
  13. McDonel, J. L. 1980. Clostridium perfringens toxins (Type A, B, C, D). Pharmac. Ther. 10: 617-655 https://doi.org/10.1016/0163-7258(80)90031-5
  14. Mitsuoka, T. 1990. Bifidobacteria and their role in human health. J. Indust. Microbiol. 6: 263-268 https://doi.org/10.1007/BF01575871
  15. Myhara, R. M., K. Nilsson, E. J. Bowmer, and P. K. Cruickshank. 1988. Gas production from melibiose, raffinose and white bean extracts by bacteria of human fecal origin. Can. Inst. Food Sci. Technol. J. 21: 245-251 https://doi.org/10.1016/S0315-5463(88)70812-3
  16. Nieschulz, O. 1966. Pharmakol. Abstract. Chem. Fabrik Promonta G.M.B.H., Hamburg, Germany, Hanc, Oldrich, Ed. Sci. Pharm. Proc. 25th, Butterworths: London, England, 559-564. CAN 70: 18805
  17. Nowak, J. and K. H. Steinkraus. 1988. Effect of tempeh fermentation of peas on their potential flatulence productivity as measured by gas production and growth of Clostridium perfringens. Nutr. Rep. Int. 38: 1163-1171
  18. Oberhelman, R. A., R. H. Gilman, P. Sheen, D. N. Taylor, R. E. Black, L. Cabrera, A. G. Lescano, R. Meza, and G. Madico. 1999. A placebo-controlled trial of Lactobacillus GG to prevent diarrhea in undernourished Peruvian children. J. Pediatr. 134: 15-20 https://doi.org/10.1016/S0022-3476(99)70366-5
  19. Paulini, H., R. Popp, O. Schimmer, O. Ratka, and E. Roder. 1991. Isogravacridonchlorine: A potent and direct acting frameshift mutagen from the roots of Ruta graveolens. Planta Medica 57: 59-61 https://doi.org/10.1055/s-2006-960019
  20. Phuapradit, P., W. Varavithya, K. Vathanophas, R. Sangchai, A. Podhipak, U. Suthutvoravut, S. Nopchinda, V. Chantraruksa, and F. Haschke. 1999. J. Med. Assoc. Thailand 1: 43-48
  21. Salminen, S., E. Isolauri, and E. Salminen. 1984. Clinical uses of probiotics for stabilizing the gut mucosal barrier: Successful strains and future challenges. Antonie van Leeuwenhoek 70: 347-358 https://doi.org/10.1007/BF00395941
  22. Savage, D. C. 1977. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31: 107-133 https://doi.org/10.1146/annurev.mi.31.100177.000543
  23. Skar, V., A. G. Skar, and J. H. Sromme. 1988. Beta-glucuronidase activity related to bacterial growth in common bile duct bile in gallstone patients. Scand. J. Gastroenterol. 23: 83-90
  24. Szendrei, K., E. Minker, M. Koltai, J. Reisch, J. Novak, and G. Buzas. 1968. Quaternary alkaloids from Ruta graveolens L. Pharmazie 23: 519-520
  25. Talarico, T. L. and W. J. Dobrogosz. 1989. Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob. Agents Chemother. 33: 674-679 https://doi.org/10.1128/AAC.33.5.674
  26. Tissier, H. 1906. Traitement des infections intestinales par la methodle de la flore bactertienne de intestin. Crit. Rev. Soc. Biol. 60: 359-361
  27. Ulubelen, A. and H. Guner. 1988. Isolation of dehydromoskachan C from Ruta chalepensis var. Latifolia. J. Nat. Prod. 51: 1012-1013 https://doi.org/10.1021/np50059a040
  28. Ulubelen, A., B. Terem, E. Tuzlaci, K. F. Cheng, and Y. C. Kong. 1986. Alkaloids and coumarins from Ruta chalepensis. Phytochemistry 25: 2692-2693 https://doi.org/10.1016/S0031-9422(00)84549-5