Significance of Dissimilatory Fe(III) Reduction in Organic Matter Oxidation and Bioremediation of Environmental Contaminants in Anoxic Marine Environments

혐기성 해양환경에서 철 환원세균에 의한 유기물 분해 및 생물정화

  • Hyun Junc-Ho (Marine Bio-Technology Research Division, Korea Ocean Research and Development Institute)
  • 현정호 (한국해양연구원, 해양바이오 신소재연구사업단)
  • Published : 2005.08.01

Abstract

I reviewed an ecological and environmental significance of microbial carbon respiration coupled to dis-similatory reduction of fe(III) to Fe(II) which is one of the major processes controlling mineralization of organic matter and behavior of metals and nutrients in various anaerobic environments. Relative significance of Fe(III) reduction in the mineralization of organic matter in diverse marine environments appeared to be extremely variable, ranging from negligible up to $100\%$. Cenerally, Fe(III) reduction dominated anaerobic car-bon mineralization when concentrations of reactive Fe(III) were higher, indicating that availability of reactive Fe(III) was a major factor determining the relative significance of Fe(III) reduction in anaerobic carbon mineralization. In anaerobic coastal sediments where $O_2$ supply is limited, tidal flushing, bioturbation and vegetation were most likely responsible for regulating the availability of Fe(III) for Fe(III) reducing bacteria (FeRB). Capabilities of FeRB in mineralization of organic matter and conversion of metals implied that FeRB may function as a useful eco-technological tool for the bioremediation of anoxic coastal environments contaminated by toxic organic and metal pollutants.

산소가 고갈된 혐기성 환경의 유기물 분해 및 물질순환에서 철 환원반응의 생태/환경적 중요성에 대해 고찰하였다. 다양한 해양환경에서 유기물 분해 시 철 환원이 차지하는 중요성은 미약한 수준에서 거의 $100\%$에 이르기까지 그 범위가 극단적으로 다양하게 나타났다. 일반적으로 철 환원은 Fe(III)의 농도가 높은 곳에서 황산염 환원보다 중요한 유기물 분해 경로로 나타나, 유기물 분해에서 철 환원의 중요성은 철 환원세균이 이용 가능한 Fe(III)의 공급정도에 의해 결정되는 것으로 인식되었다. 산소공급이 미약한 연안혐기성 퇴적토 내에서 Fe(III)의 공급은: (1)조석에 의한 퇴적물 내 공극수의 교환(tidal flushing): (2)저서동물에 의한 생물교란: (3)식생의 유무에 따른 퇴적물의 산화/환원 상태의 변화 등에 의해 주로 영향을 받는 것으로 나타났다 철 환원세균에 의한 유기물 분해 및 다양한 금속원소의 전환기능을 이용한 특정 유기오염원과 금속오염원의 생물정화는 우리나라와 같이 부영양화된 연안생태환경의 개선 및 독성 유t무기 오염원의 생물정화 등 연안역의 환경친화적 관리가 절실히 요구되는 환경에서 생태/환경공학 분야의 유용한 해결수단으로 간주된다.

Keywords

References

  1. Aller, R.C., J.E. Mackin, and R.T. Cox, Jr., 1986. Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implication for the genesis of ironstones. Cont. Shelf. Res., 6: 263-289 https://doi.org/10.1016/0278-4343(86)90064-6
  2. Anderson, R.T., J.N. Rooney-Varga, C.V. Gaw, and D.R. Lovley, 1998. Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifers. Environ. Sci. Technol., 32: 1222-1229 https://doi.org/10.1021/es9704949
  3. Blackburn, T.H., B.A. Lund, and M. Krom, 1988. C- and N-mineralization in the sediments of earthen marine fishponds. Mar. Ecol. Prog. Ser., 44: 221-227 https://doi.org/10.3354/meps044221
  4. Bostrom, B., M. Jansson, and C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol., 18: 5-59
  5. Caldwell, M.E., R.M. Garrett, R.C. Prince, and J.M. Suflita, 1998. Anaerobic biodegradation of long-chain n-alkanes under sulfate reducing conditions. Environ. Sci. Technol., 32: 2191-2195 https://doi.org/10.1021/es9801083
  6. Canfield, D.E., B. Thamdrup and J.W. Hansen, 1993a. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Acta, 57: 3867-3883 https://doi.org/10.1016/0016-7037(93)90340-3
  7. Canfield, D.E., B.B. Jorgensen, H. Fossing, R Glud, J. Gundersen, N.B. Ramsing, B. Thamdrup, J.W. Hansen, L.P. Nielsen, and P.O.J. Hall, 1993b. Pathways of organic carbon oxidation in three continental margin sediments. Mar.Geol., 113: 27-40 https://doi.org/10.1016/0025-3227(93)90147-N
  8. Canfield, D.E., 1994. Factors influencing organic carbon preservation in marine sediments. Chem. Geol., 114: 315-329 https://doi.org/10.1016/0009-2541(94)90061-2
  9. Capone, D.G. and R. Kiene, 1988. Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism. Limnol. Oceanogr., 33: 725-749 https://doi.org/10.4319/lo.1988.33.4_part_2.0725
  10. Cerniglia, C.E., and M.A. Heitkamp, 1989. Microbial degradation of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment. In: Metabolism of polycyclic aromatic hydrocarbons in the aquatic envirorunent, edited by Varanasi, U., CRC Press, Boca Raton, FL., pp. 41-68
  11. ChapeIIe, P.H., and D.R. Lovley, 1992. Competitive exclusion of sulfate reduction by Fe(II)-reducing bacteria: a mechanism for producing discrete zones of high-iron ground water. Groundwater, 30: 29-36 https://doi.org/10.1111/j.1745-6584.1992.tb00808.x
  12. Christensen, P.B., S. Rysgaard, N.P. Sloth, T. Dalsgaard, and S. Schwarter, 2000. Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium in an estuarine fjord with sea cage trout farms. Aquat. Microb. Ecol., 21: 73-84 https://doi.org/10.3354/ame021073
  13. Coates, J.D., J. Woodard, J. Allen, P. Philp, and D.R. Lovley, 1997. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbour sediments. Appl. Environ. Microbiol., 63: 3589-3593
  14. Coleman, M.L., D.B. Hedrick, D.R. Lovley, D.C. White, and K. Pye. 1993. Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature, 361: 436-438 https://doi.org/10.1038/361436a0
  15. Dua, M., A. Singh, N. Sethunsthan, and A.K. Johri, 2002. Biotechnology and bioremediation: successes and limitation. Appl. Microbiol. Biotechnol., 59: 143-152 https://doi.org/10.1007/s00253-002-1024-6
  16. Fenchel, T. G.M. King, and T.H. Blackburn, 1998. Bacterial biogeochemistry: the ecophysiology of mineral cycling. Academic Press, San Diego, p. 307
  17. Fredrickson, J.K., and Y.A. Gorby, 1996. Environmental processes mediated by iron-reducing bacteria Curr. Opin. Biotech., 7: 287-294 https://doi.org/10.1016/S0958-1669(96)80032-2
  18. Gottschalk, G, 1986. Bacterial metabolism. Springer-Verlag, New York, p. 359
  19. Gribsholt, B., J.E. Kostka, and E. Kristensen, 2003. Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh. Mar. Ecol. Prog. Ser.,. 259: 237-251 https://doi.org/10.3354/meps259237
  20. Harms, G., K. Zengler, R. Rabus, F. Aeckersberg, D. Minz, R. Rossello-Mora, and F. Widdel. 1999. Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl. Environ. Microbiol., 65: 999-1004
  21. Hedges, J.l., and R.G. Keil, 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem., 49: 81-115 https://doi.org/10.1016/0304-4203(95)00008-F
  22. Hines, M.E., D.A. Bazylinski, J.B. Tugel, and W.B. Lyons, 1991. Anaerobic microbial biogeochemistry from two vasins in the Gulf of Maine: evidence for iron and manganese reduction. Estuarine Coastal Shelf Sci., 32: 313-324 https://doi.org/10.1016/0272-7714(91)90046-E
  23. Holmer, M., B. Gribsholt and E. Kristensen, 2002. Effects of sea level rise on growth of Spartina anglica and oxygen dynamics in rhizosphere and salt marsh sediments. Mar. Ecol. Prog. Ser., 225: 197-204 https://doi.org/10.3354/meps225197
  24. Howarth, R.W., 1993. Microbial processes in salt-marsh sediments. In: Aquatic microbiology: An ecological approach, edited by Ford, T.E., Blackwell, pp. 239-259
  25. Hyun, J.-H., H.K. Lee, and K.K. Kwon, 2003. Sulfate reduction in marine environments: its controlling factors and relative significance in mineralization of organic matter. [The Sea] J. Kor. Soc. Oceanogr., 8: 210-224
  26. Jacobsen, M.E., 1994. Chemical and biological mobilization of Fe(III) in marsh sediments. Biogeochem., 25: 41-60
  27. Jahnke, R.A., and D.B., Craven, 1995. Quantifying the role of heterotrophic bacteria in the carbon cycle: A need for respiration rate measurements. Limnol. Oceanogr., 40: 436-441 https://doi.org/10.4319/lo.1995.40.2.0436
  28. Jensen, M.M., B. Thamdrup, S. Rysgaard, M. Holmer, and H. Fossing. 2003. Rates and regulation of microbial iron reduction in sediments of the Baltic-North Sea transition. Biogeochem., 65: 295-317 https://doi.org/10.1023/A:1026261303494
  29. Johnson, D.B., 1998. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol., 27: 307-317 https://doi.org/10.1111/j.1574-6941.1998.tb00547.x
  30. Kazumi, J., M.M. Haggblom, and L.Y. Young, 1995. Degradation of monochlorinated and nonchlorinated aromatic compounds under iron-reducing conditions. Appl. Environ. Microbiol., 61: 4069-4073
  31. King, G.M., M.J. Klug, R.G. Wiegert, and A.G. Chalmers, 1982. Relation of soil water movement and sulfide concentration to Spartina alterniflora production in a Georgia Salt Marsh. Science, 218: 61-63 https://doi.org/10.1126/science.218.4567.61
  32. King. G.M., 1990. Effects of added manganic and ferric oxides on sulfate reduction and sulfide oxidation in intertidal sediments. FEMS Microbiol. Ecol., 73: 131-138 https://doi.org/10.1111/j.1574-6968.1990.tb03933.x
  33. King, G.M., D. Kirchman, A.A. Salyer, W Schlesinger, and J.M. Tiedje, 2000. Global environmental change. Am. Soc. Microbiol., Washington D.C., 12 pp
  34. Koch, M.S., I.A. Mendelssohn, and K. L. McKee, 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnol. Oceanogr., 35: 399-408 https://doi.org/10.4319/lo.1990.35.2.0399
  35. Koretsky, C.M., C.M. Moore, K.L. Lowe, C. Meile, T.J. DiChristina, and P. Van Cappellen, 2003. Seasonal oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA). Biogeochem., 64: 179-203 https://doi.org/10.1023/A:1024940132078
  36. Kostka, J.E., A. Roychoudhury and P. Van Cappellen, 2002a. Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments. Biogeochemistry, 60: 49-76 https://doi.org/10.1023/A:1016525216426
  37. Kostka, J. E., B. Gribsholt, E. Petrie, D. Dalton, H. Skelton and E. Kristensen, 2002b. The rates and pathways of carbon oxidation in biotirbated saltmarsh sediments. Limnol. Oceanogr., 47: 230-240 https://doi.org/10.4319/lo.2002.47.1.0230
  38. Kristensen, E., F. O. Andersen, N. Holmboe, M. Holmer and N. Thongtham, 2000. Carbon and nitrogen mineralization in sediments of the Bangrong mangrove area, Phuket, Thailand. Aquat. Microb. Ecol., 22: 199-213 https://doi.org/10.3354/ame022199
  39. Kusel, K., T. Dorsch, G. Acker, and E.Stackebrandt, 1999. Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphillum cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl. Environ. Microbiol., 65: 3633-3640
  40. LaRock, P.A., J.-H. Hyun, S. Boutelle, W.C. Burnett, and C.D. Hull, 1996. Bacterial mobilization of polonium. Geochim. Cosmochim. Acta, 60: 4321-4328 https://doi.org/10.1016/S0016-7037(96)00255-4
  41. Lovley, D.R., and E.J.P. Phillips, 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol., 51: 683-689
  42. Lovley, D.R., and E.J.P. Phillips, 1987. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduciton in sediments. Appl. Environ. Microbiol., 53: 2636-2641
  43. Lovley, D.R., J.F. Stolz, G.L. Nord, and E.J.P. Phillips. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 330: 252-254 https://doi.org/10.1038/330252a0
  44. Lovley, D.R., and E.J.P. Phillips, 1988. Manganese inhibition of microbial iron reduction in anaerobic sediments. Geomicrobiol. J., 6: 145-155 https://doi.org/10.1080/01490458809377834
  45. Lovley, D.R, M.J. Baedecker, D.J. Lonergan, I.M. Cozzarelli, E.J.P. Phillips, and D.I. Siegel, 1989. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature, 339: 297-299 https://doi.org/10.1038/339297a0
  46. Lovley, D.R, 1990. Magnetite formation during microbial dissimilatory iron reduction. In: Iron biominerals, edited by Frankel, R.B., and R.P. Blakemore, Plenum Publishing Co., New York. pp. 151-166
  47. Lovley, D.R., 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev., 55: 259-287
  48. Lovley, D.R., E.J.P. Phillips, Y.A. Gorby, and E.R. Landa, 1991. Microbial reduction of uranium. Nature, 350: 413-416 https://doi.org/10.1038/350413a0
  49. Lovley, D.R., and E.J.P. Phillips, 1992. Reduction of uranium by Desulfovibrio desulfuricans. Appl. Environ. Microbiol., 58: 850-856
  50. Lovley, D.R., E.E. Roden, E.J.P. Phillips, and J.C. Woodward, 1993. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar. Geol., 113: 41-53 https://doi.org/10.1016/0025-3227(93)90148-O
  51. Lovley, D.R., J.C. Woodward, and F.H. Chapelle, 1994. Stimulated anoxic biodegradation of aromatic hydrocarbon using Fe(III) ligands. Nature, 370: 128-131 https://doi.org/10.1038/370128a0
  52. Lovley, D.R., and J.D. Coates, 1997. Bioremedation of metal contamination. Curr. Opin. Biotech., 8: 285-289 https://doi.org/10.1016/S0958-1669(97)80005-5
  53. Lovley, D.R, 2000. Environmental microbe-metal interactions. ASM Press, Washington, D.C., 395 pp
  54. Lowe, K.L., T.J. Dichristina, A.N. Roychoudhury, and P. Van Cappellen, 2000. Microbiological and geochemical characterization of microbial Fe(III) reduction in salt marsh sediments. Geomicrobiol. J., 17: 163-178 https://doi.org/10.1080/01490450050023836
  55. Mortimer, R.J.G., M.K. Coleman, and J.E. Rae, 1997. Effect of bacteria on the elemental composition of early diagenetic siderite: implications for paleoenvironmental interpretations. Sedimentology. 44: 759-765 https://doi.org/10.1046/j.1365-3091.1997.d01-45.x
  56. Nealson, K.H., and D. Saffarini, 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol., 48: 311-343 https://doi.org/10.1146/annurev.mi.48.100194.001523
  57. Nielsen, K., L.P. Nielsen and P. Rasmussen, 1995. Estuarine nitrogen retention independently estimated by the denitrification rate and mass balance methods: a study of Norsminde Fjord, Denmark. Mar. Ecol. Prog. Ser., 119: 275-283 https://doi.org/10.3354/meps119275
  58. Oremland, R.S., J.S. Blum, C.W. Culbertson, P.T. Visscher, L.G. Miller, P. Dowdle, and F.E. Strohmaier, 1994. Isolation, growth, and metabolism of an obligatory anaerobic, selenate-respiring bacterium, strain SES-3. Appl. Environ. Microbiol., 60: 3011-3019
  59. Petrie, L., N.N. North, S.L. Dollhopf, D.L. Balkwill, and J.E. Kostka, 2003. Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Appl. Environ. Microbiol., 69: 7467-7479 https://doi.org/10.1128/AEM.69.12.7467-7479.2003
  60. Rabus, R., R. Nordhaus, W. Ludwig, and F. Widdel, 1993. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol., 59: 1444-1451
  61. Reinhard, M., S. Shang, P.K. Kitanidis E. Orwin G.D. Hopkins, and C.A. Lebron, 1997. In situ BTEX biotransformation underen-hanced nitrate- and sulfate reducing conditions. Environ. Sci. Technol., 31: 28-36 https://doi.org/10.1021/es9509238
  62. Rueter, P., R. Rabus, H. Wilkes, F. Aeckersberg, F. Rainey, H.W. Jannasch, and F. Widdel, 1994. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature, 372: 455-458 https://doi.org/10.1038/372455a0
  63. Rysgaard, S., B. Thamdrup, N. Risgaard-Petersen, H. Fossing, P. Berg, P.B. Christensen, and T. Dalsgaard, 1998. Seasonal carbon and nutrient mineralization in a high-Arctic coastal maine sediment, Young Sound, northeast Greenland. Mar. Ecol. Prog. Ser., 175: 261-276 https://doi.org/10.3354/meps175261
  64. Shen, H., H. Prichard, and G.W. Sewell, 1996. Microbial reduction of $Cr^{6+}$ during anaerobic degradation of benzonate. Environ. Sci. Technol., 30: 1667-1674 https://doi.org/10.1021/es950657y
  65. Thamdrup, B. 2000. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol., 16: 41-84
  66. Thamdrup, B., and D.E. Canfield, 2000. Benthic respiration in aquatic sediments. In: Methods in ecosystem science, edited by Jackson, R.B., O.E. Sala, H.A. Mooney, and R.W. Howarth, Springer, New York, pp. 86-103
  67. Valiela, I., J.M. Teal, and W.G. Deuser, 1978. The nature of growth forms in the salt marsh grass Spartina alterniflora. Am. Naturalist, 112: 461-470 https://doi.org/10.1086/283290