DOI QR코드

DOI QR Code

Recent Advances in Microstructural Tailoring of Silicon Nitride Ceramics and the Effects on Thermal Conductivity and Fracture Properties

  • Becher Paul F. (Ceramic Science and Technology Group, Metals and Ceramics Division Oak Ridge National Laboratory)
  • Published : 2005.08.01

Abstract

Tailoring the microstructure and the composition of silicon nitride ceramics can have profound effects on their properties. Here it is shown that the grain growth behavior, in particular its anisotropy, is a function of the specific additives, which allow one to tune the microstructure from one consisting of more equiaxed grains to one with very elongated grains. Recent studies are discussed that provide an understanding of the atomic level processes by which these additives influence grain shapes. Next the microstructural (and compositional) parameters are discussed that can be used to modify the thermal conductivity, as well as fracture toughness of silicon nitride ceramics. As a result of the open <0001> channels in $\beta-Si_3N_4$, the c-axis conductivity can be exceptionally high. Thus, the formation of elongated c-axis grains, particularly when aligned can result in conductivity values approaching those of AlN ceramics. In addition, the controlled formation of elongated grains can also be used to significantly enhance the fracture toughness. At the same time, both properties are shown to be affected by the composition of the densification additives. Utilizing such understanding, one will be able to tailor the ceramics to achieve the properties desired for specific applications.

Keywords

References

  1. G. Petzow and M. Herrmann, Silicon Nitride, in Structure and Bonding, Vol. 102, High Performance Non-Oxide Ceramics II, Springer-Verlag, Berlin, 50-167 (2002)
  2. R. C. Sangster, Gmelin Handbook of Inorganic and Organo-metallic Chemistry , Si Supplement Vols. B5d1 and B5d2, Silicon Nitride : Chemical Reactions, Springer-Verlag, Berlin, 1995
  3. R. Morrell, F. L. Riley, and J. Wagner, Gmelin Handbook of Inorganic and Organo-metallic Chemistry, Si Supplement, Vol. B5b1, $Si_{3}N_{4}$ Physical Properties : Mechanical and Thermal Properties, Diffusion, Springer-Verlag, Berlin, 1996
  4. E. F. Krimmel and E. F. Hockings, Gmelin Handbook of Inorganic and Organo-metallic Chemistry , Si Supplement, Vol. B5b2, $Si_{3}N_{4}$ Physical Properties : Electronic Structure; Electrical, Magnetic, and Optical Properties; Spectra; Analysis, Springer-Verlag, Berlin, 1997
  5. Progress in Ceramic Gas Turbine Development, Vol. 1-Ceramic Gas Turbine Design and Test Experience, Ed. by M. van Roode, M. K. Ferber and D. W. Richerson, ASME Press, New York, 2003
  6. Progress in Ceramic Gas Turbine Development, Vol. 2-Ceramic Gas Turbine Component Development and Characterization, Ed. by M. van Roode, M. K. Ferber and D. W. Richerson, ASME Press, New York, 2002
  7. S. M. Wiederhorn and M. K. Ferber, Current Opinion in Solid State and Mater. Sci., 5 311-16 (2001) https://doi.org/10.1016/S1359-0286(00)00032-2
  8. M. J. Hoffmann, ' Analysis of Microstructure Development and Mechanical Properties,' in Tailoring of Mechanical Properties of $Si_{3}N_{4}$ Ceramics, Ed. by M. Hoffmann and G. Petzow, Kluwer Academic Publishers, Netherlands, 59-72 (1994)
  9. M. J. Hoffmann, H. Gu, and R. M. Cannon, ' Influence of the Interfacial Properties on the Development and Properties of Silicon Nitride Ceramics,' in MRS Symp. Proc., Vol. 585-Interfacial Engineering for Optimized Properties II, Ed. by C. B. Carter, E. L. Hall, C. L. Briant, and S. Nutt, MRS, Warrendale, PA, 65-74, 2000
  10. M. Kitayama, K. Hirao, M. Toriyama, and S. Kanzaki, J. Ceram. Soc. Jpn., 107 [11] 995-1000 (1999) https://doi.org/10.2109/jcersj.107.995
  11. R. L. Satet and M. J. Hoffmann, J. Eur. Ceram. Soc., 24 3437-45 (2004) https://doi.org/10.1016/j.jeurceramsoc.2003.10.034
  12. M. Zenotchkine, R. Shuba, and I.-W. Chen, J. Am. Ceram. Soc., 87 [6] 1040-46 (2004) https://doi.org/10.1111/j.1551-2916.2004.01040.x
  13. M. Zenotchkine, R. Shuba, and I.-W. Chen, J. Am. Ceram. Soc., 86 [7] 1168-75 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb03443.x
  14. P. F. Becher, E. Y. Sun, K. P. Plucknett, K. B. Alexander, C.-H. Hsueh, H.-T. Lin, S. B. Waters, C. G. Westmoreland, E.-S. Kang, K. Hirao, and M. Brito, J. Am. Ceram. Soc., 81 [11] 2821-30 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02702.x
  15. E. Y. Sun, P. F. Becher, C.-H. Hsueh, S. B. Waters, K. P. Plucknett, K. Hirao, and M. Brito, J. Am. Ceram. Soc., 81 [11] 2831-40 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02703.x
  16. M. Kitayama, K. Hirao, M. Toriyama, and S. Kanzaki, J. Ceram. Soc. Jpn., 107 [10] 930-34 (1999) https://doi.org/10.2109/jcersj.107.930
  17. M. Kitayama, K. Hirao, M. Toriyama, and S. Kanzaki, Acta Mater., 46 [18] 6551-57 (1998) https://doi.org/10.1016/S1359-6454(98)00291-2
  18. M. Kramer, D. Wittmuess, H. Kueppers, M. Hoffmann, and G. Petzow, J. Cryst. Growth, 140 157-66 (1994) https://doi.org/10.1016/0022-0248(94)90509-6
  19. G. S. Painter, P. F. Becher, W. A. Shelton, R. L. Satet, and M. J. Hoffmann, Phys. Rev. B, 70 144108 (2004) https://doi.org/10.1103/PhysRevB.70.144108
  20. P. F. Becher, G. S. Painter, N. Shibata, R. L. Satet, M. J. Hoffmann, and S. J. Pennycook, ' Influence of Additives on Anisotropic Grain Growth in Silicon Nitride Ceramics,' submitted
  21. N. Shibata, S. J. Pennycook, T. R. Gosnell, G. S. Painter, W. A. Shelton, and P. F. Becher, Nature, 42 8730-33 (2004)
  22. G. B. Winkelman, C. Dwyer, T. S. Hudson, D. Nguyen-Mahn, M. Doblinger, R. L. Satet, M. J. Hoffmann, and D. J. H. Cockayne, ' Arrangement of Rare-Earth Elements at Prismatic Grain Boundaries in Silicon Nitride,' Phil Mag. Lett., in press
  23. A. Ziegler, J. C. Idrobo, M. K. Cinibulk, C. Kisielowski, N. D. Browning, and R. O. Ritchie, Science, 306 1768-70 (2004) https://doi.org/10.1126/science.1104173
  24. B. Li, L. Pottier, J. P. Roger, D. Fournier, K. Watari, and K. Hirao, J. Eur. Ceram. Soc., 19 1631-39 (1999) https://doi.org/10.1016/S0955-2219(98)00258-1
  25. G. Ziegler, ' Thermal Properties and Thermal Shock Resistance in Silicon Nitride,' in Progress in Nitrogen Ceramics, Ed. by F. L. Riley, Martinus Nijhoff Publishers, Boston 565-88 (1989)
  26. N. Hirosaki, Y. Okamoto, M. Ando, F. Munakata, and Y. Akimune, J. Am. Ceram. Soc., 79 [11] 2878-82 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08721.x
  27. K. Hirao, K. Watari, M. E. Brito, M. Toriyama, and S. Kanzaki, J. Am. Ceram. Soc., 79 [9] 2485-88 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb09002.x
  28. J. S. Haggerty and A. Lightfoot, Ceram. Eng. And Sci. Proc., 16 [4] 475-87 (1995)
  29. M. Kitayama, K. Hirao, K. Watari, M. Toriyama, and S. Kanzaki, J. Am. Ceram. Soc., 82 [11] 3105-12 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02209.x
  30. M. Kitayama, K. Hirao, K. Watari, M. Toriyama, and S. Kanzaki, J. Am. Ceram. Soc., 84 [2] 353-58 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb00662.x
  31. M. Kitayama, K. Hirao, K. Watari, M. Toriyama, and S. Kanzaki, J. Am. Ceram. Soc., 83 [8] 1985-92 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01501.x
  32. G. V. Samsonov, The Oxide Handbook, IFI/Plenum Press, New York, 1973
  33. S. Hampshire, R. A. L. Drew, and K. H. Jack, Phys. Chem. Glasses, 26 [5] 182-86 (1985)
  34. H. Yokota and M. Ibukiyama, 'A High Thermal Conductive $\beta$-Silicon Nitride Substrate for Power Modules,' in Ceramic Materials and Components for Engines, Ed. by J. G. Heinrich and F. Aldinger, Wiley-VCH, New York, 499-504 (2001)
  35. M. van Roode, W. D. Brentnall, K. O. Smith, B. D. Edwards, J. McClain, and J. R. Price, ' Ceramic Stationary Gas Turbine Development-Fourth Annual Summary,' ASME paper 97-GT-317, Presented at the International Gas Turbine and Aeroengine Congress and Exposition, Orlando, Florida, June 2-5, 1997
  36. S. R. Choi, J. M. Pereira, L. A. Janosik, and R. T. Bhatt, Ceram. Eng. Sci. Proc., 23 [3] 193-20 (2002)
  37. P. F. Becher, 'Microstructural Design of Toughened Ceramics,' J. Am. Ceram. Soc., 74 [2] 255-69 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb06872.x
  38. A. G. Evans, ' Perspective on the Development of High-Toughness Ceramics,' J. Am. Ceram. Soc., 73 [1] 187-206 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb06493.x
  39. A. K. Hirao, T. Nagaoka, M. E. Brito, and S. Kanzaki, ' Microstructure Control of Silicon Nitride by Seeding with Rod-Like $\beta$-Silicon Nitride Particles,' J. Am. Ceram. Soc., 77 1857-62 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb07062.x
  40. J. Kim, A. Rosenflanz, and I. W. Chen, ' Microstructure Control of In-Situ Toughened $\alpha$'-SiAlON Ceramics,' J. Am. Ceram. Soc., 83 [7] 1819-21 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01472.x

Cited by

  1. /SiON Stack Structure for c-Si Solar Cell Passivation Application vol.51, pp.3, 2014, https://doi.org/10.4191/kcers.2014.51.3.197