256-Channel Trans-Admittance Scanner with Lesion Estimation Algorithm for Breast Cancer Detection

  • Oh, Tong-In (Department of Biomedical Engineering, Kyung Hee University) ;
  • Kim, Kyu-Sik (Department of Biomedical Engineering, Kyung Hee University) ;
  • Lee, Jae-Sang (Department of Biomedical Engineering, Kyung Hee University) ;
  • Woo, Eung-Je (Department of Biomedical Engineering, Kyung Hee University) ;
  • Park, Chun-Jae (Impedance Imaging Research Center, Kyung Hee University)
  • Published : 2005.08.01

Abstract

Breast cancer detection using electrical impedance techniques is based on numerous experimental findings that cancerous tissues have higher electrical conductivity values than normal tissues. Lately, by taking advantage of the structure of current flows underneath a planar probe of array electrodes, a mathematical formula to find lesions from a measured trans­admittance map has been derived. In order to experimentally validate its mathematical analysis and the suggested lesion estimation algorithm, we developed a 256-channel trans-admittance scanner (TAS) for probing anomalies underneath a planar array of electrodes. In this paper, we describe the design and implementation of the TAS. Its performance together with the lesion estimation algorithm was evaluated using saline phantoms. Further studies are proposed to validate the system on human subjects.

Keywords

References

  1. A. J. Surowiec, S. S. Stuchly, J. R. Barr, and A. Swarup, 'Dielectric properties of breast carcinoma and the surrounding tissues', IEEE Trans. Biomed. Eng., Vol 35, pp. 257-263, 1988 https://doi.org/10.1109/10.1374
  2. J. Jossinet and M. Schmitt, 'A review of parameters for the bioelectrical characterization of breast tissue ', Ann. New York Academy of Sci., Vol 873, pp. 30-41, 1999 https://doi.org/10.1111/j.1749-6632.1999.tb09446.x
  3. J. E. Silva, J. P. Marques, and J. Jossinet, 'Classification of breast tissue by electrical impedance spectroscopy', Med. Biol. Eng. Comput., Vol. 38, pp. 26-30, 2000 https://doi.org/10.1007/BF02344684
  4. T. E. Kerner, K. D. Paulsen, A. Hartov, S. K. Soho, and S. P. Poplack, 'Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects ', IEEE Trans. Med. Imag., Vol. 21, pp. 638-645, 2002 https://doi.org/10.1109/TMI.2002.800606
  5. V. Cherepenin, A. Karpov, A. Korjenevsky, V. Kornienko, A. Mazaletskaya, D. Mazourov, and J. Meister, 'A 3D electrical impedance tomography (EIT) system for breast cancer detection', Physiol. Meas., Vol. 22, pp. 9-18, 2001 https://doi.org/10.1088/0967-3334/22/1/302
  6. V. Cherepenin, A. Karpov, A. Korjenevsky, V. Kornienko, Y. Kultiasov, M. Ochapkin, O. Trochanova, and J. Meister, 'Three-dimensional EIT imaging of breast tissues: system design and clinical testing', IEEE Trans. Med. Imag., Vol. 21,pp.662-667, 2002 https://doi.org/10.1109/TMI.2002.800602
  7. J. L. Larson-Wiseman, Early Breast Cancer Detection Utilizing Clustered Electrode Arrays in Impedance Imaging, Ph.D. Thesis, RPI, Troy, NY, USA, 1998
  8. J. L. Mueller, D. Isaacson, and J. C. Newell, 'A reconstruction algorithm for electrical impedance tomography data collected on rectangular electrode arrays', IEEE Trans. Biomed. Eng., Vol. 46, pp. 1379-1386, 1999 https://doi.org/10.1109/10.797998
  9. T. Kao, J. C. Newell, G. J. Saulinier, and D. Isaacson, 'Distinguishability of inhomogeneities using planar electrode arrays and different patterns of applied excitation', Physiol. Meas., Vol. 24, pp. 403-411, 2003 https://doi.org/10.1088/0967-3334/24/2/352
  10. R. P. Henderson and J. G. Webster, 'An impedance camera for spatially specific measurements of the thorax ', IEEE Trans. Biomed. Eng., Vol. 25, pp. 250-254, 1978 https://doi.org/10.1109/TBME.1978.326329
  11. M. Assenheimer, O. Laver-Moskovitz, D. Malonek, D. Manor, U. Nahliel, R. Nitzan, and A. Saad, 'The T-Scan technology: electrical impedance as a diagnostic tool for breast cancer detection' , Physiol. Meas., Vol. 22, pp. 1-8, 2001 https://doi.org/10.1088/0967-3334/22/1/301
  12. B. Scholz, 'Towards virtual electrical breast biopsy: space-frequency MUSIC for trans-admittance data' , IEEE Trans. Med. Imag., Vol. 21, pp. 588-595, 2002 https://doi.org/10.1109/TMI.2002.800609
  13. H. Ammari, O. Kwon, J. K. Seo, E. J. Woo, 'T-Scan electrical impedance imaging system for anomaly detection', SIAM J. Appl. Math., Vol. 65, pp. 252-266, 2004 https://doi.org/10.1137/S003613990343375X
  14. J. K. Seo, O. Kwon, H. Ammari, and E. J. Woo, 'Mathematical framework and anomaly estimation algorithm for breast cancer detection: electrical impedance technique using TS2000 configuration', IEEE Trans. Biomed. Eng., Vol. 51, pp. 1898-1906, 2004 https://doi.org/10.1109/TBME.2004.834261
  15. J. W. Lee, T. I. Oh, J. S. Lee, E. J. Woo, J. K. Seo, and O. Kwon, 'Development of trans-admittance scanner (TAS) for breast cancer detection', J. Biomed. Eng. Res., Vol. 25, pp. 335-342, 2004
  16. S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits, 3rd. ed., McGraw-Hill, NY, USA, 2002
  17. R. D. Cook, G. J. Saulnier, D. G. Gisser, J. G. Goble, J. C. Newell, and D. Isaacson, 'ACT3: a high-speed, high-precision electrical impedance tomography', IEEE Trans. Biomed. Eng., Vol. 41, pp. 713-722, 1994 https://doi.org/10.1109/10.310086
  18. J. S. Lee, T. I. Oh, S. M. Baek, K. S. Kim, M. H. Lee, S. P. Cho, and E. J. Woo, 'Design and implementation of FPGA for improvement of SNR in digital electrical impedance tomography system', Proc. 31st Ann. Conf. KOSOMBE, Vol. 31, pp. 333-336, 2004