A CFD Study on Thermo-Acoustic Instability of Methane/Air Flames in Gas Turbine Combustor

  • Sohn, Chae-Hoon (Department of Aerospace Engineering, Chosun University) ;
  • Cho, Han-Chang (Research Institute of Industrial Science and Technology)
  • Published : 2005.09.01

Abstract

Thermo-acoustic instability of methane/ air flames in an industrial gas-turbine combustor is numerically investigated adopting CFD analysis. The combustor has 37 EV burners through which methane and air are mixed and then injected into the chamber. First, steady fuel! air mixing and flow characteristics established by the burner are investigated by numerical analysis with single burner. And then, based on information on the flow data, the burners are modeled numerically via equivalent swirlers, which facilitates the numerical analysis with the whole combustion system including the chamber and numerous burners. Finally, reactive flow fields within the chamber are investigated numerically by unsteady analysis and thereby, spontaneous instability is simulated. Based on the numerical results, scaling analysis is conducted to find out the instability mechanism in the combustor and the passive control method to suppress the instability is proposed and verified numerically.

Keywords

References

  1. Aigner, M. and Muller, G., 1993, 'Second-Generation Low-Emission Combustors for ABB Gas Turbines : Field Measurements with GT11N- EV, https://doi.org/10.1115/1.2906740
  2. Anderson, W. E., Ryan, H. M. and Santoro, R. J., 1995, in Liquid Rocket Engine Combustion Instability (V. Yang, and W. E. Anderson, eds.), Progress in Astronautics and Aeronautics, Vol. 169, AlAA, Washington DC, pp. 215-246
  3. Cannon, S. M., Adumitroaie, V. and Smith, C. E., 2001, '3D LED Modeling of Combustion Dynamics in Lean Premixed Combustors,' ASME paper #2001-GT-0375
  4. CFDRC, 2003, CFD-ACE-GUI Modules Manual, Vol. 1, Ver. 2003, Huntsville, AL.
  5. Culick, F. E. C. and Yang, V., 1995, in Liquid Rocket Engine Combustion Instability (V. Yang, and W. E. Anderson, eds.), Progress in Astronautics and Aeronautics, Vol. 169, AIAA, Washington DC, pp. 3-38
  6. Davoudzadeh, F. and Liu, N., 2004, 'Numerical Prediction of Non-Reacting and Reacting Flow in a Model Gas Turbine Combustion,' ASME paper #2004-GT-53496
  7. Drazin, P. G., 1992, Nonlinear Systems, Cambridge Univ. Press, Glasgow, UK.
  8. Ferziger, J. H. and Peric, M., 1996, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, Germany
  9. Fleifil, M., Annaswamy, A. M., Ghoniem, Z. A., and Ghoniem, A. F., 1996, 'Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Results,' Combustion and Flame, Vol. 106, pp. 487-510 https://doi.org/10.1016/0010-2180(96)00049-1
  10. Flohr, P., Oliver, P., van Roon, B. and Schuermans, B., 2001, 'Using CFD for Time-Delay Modeling of Premix Flames,' ASME paper #2001-GT-0376
  11. Harrje, D. J. and Reardon, F. H. (eds.), 1972, Liquid Propellant Rocket Combustion Instability, NASA SP-194
  12. Huzel, D. K. and Huang, D. H., 1992, Modern Engineering for Design of Liquid-Propellant Rocket Engines, Vol. 147, Progress in Astronautics and Aeronautics, AIAA, Washington DC, p. 113
  13. Kim, J. S. and Williams, F. A., 1994, 'Contribution of Strained Diffusion Flames to Acoustic Pressure Response,' Combustion and Flame, Vol. 98, pp. 279-299 https://doi.org/10.1016/0010-2180(94)90242-9
  14. Lefebvre, A. H., 1998, Gas Turbine Combustion, 2nd ed., Taylor & Francis, Ann Arbor, MI.
  15. Lieuwen, T., Torres, H., Johnson, C. and Zinn, B. T., 2001, 'A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors,' Journal of Engineering for Gas Turbines and Power, Vol. 123, pp. 182-189 https://doi.org/10.1115/1.1339002
  16. Magnussen, B. F. and Hjertager, B. H., 1976, 'On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion,' The Sixteenth (International) Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 719-729
  17. McManus, K. R., Poinsot, T., and Candel, S. M., 1993, 'A Review of Active Control of Combustion Instabilities,' Progress in Energy and Combustion Science, Vol. 19, pp. 1-29 https://doi.org/10.1016/0360-1285(93)90020-F
  18. Moon, G. F., Lee, J. H., Jeon, C. H. and Chang, Y. J., 2004, 'Experimental Study on Heat Release in a Lean Premixed Dump Combustor Using OH Chemiluminescence Images,' Transactions of KSME (B) (in Korea), Vol. 28, No. 11, pp. 1368-1375 https://doi.org/10.3795/KSME-B.2004.28.11.1368
  19. Peters, N., 2000, Turbulent Combustion, Cambridge Univ. Press, UK.
  20. Poinsot, T. and Veynante, D., 2001, Theoretical and Numerical Combustion, R. T. Edwards, Inc., Philadelphia, PA.
  21. Rayleigh, J. W. S., 1945, The Theory of Sound, Vol. 2, Dover, NY. pp.226-235
  22. Richards, G. and Janus, M. C., 1998, 'Characterization of Oscillation During Premix Gas Turbine Combustion,' Journal of Engineering for Gas Turbines and Power, Vol. 120, pp. 294-302 https://doi.org/10.1115/1.2818120
  23. Seo, S., 2003, 'Combustion Instability Mechanism of a Lean Premixed Gas Turbine Combustor,' KSME International Journal, Vol. 17, No.6, pp.906-913
  24. Sohn, C. H., 2002a, 'Unsteady Analysis of Acoustic Pressure Response in $N_2$ Diluted $H_2$ and Air Diffusion Flames,' Combustion and Flame, Vol. 128, pp. 111-120 https://doi.org/10.1016/S0010-2180(01)00336-4
  25. Sohn, C. H. and Cho, H. C., 2004, 'Numerical Analysis of Acoustic Characteristics in Gas Turbine Combustor with Spatial Non-homogeneity,' KSME International Journal, Vol. 18, No.8, pp. 1461-1469
  26. Sohn, C. H. and Chung, S. H., 2000, 'Effect of Pressure on the Extinction, Acoustic Pressure Response, and NO Formation in Diluted Hydrogen-Air Diffusion Flames,' Combustion and Flame, Vol. 121, pp.288-300 https://doi.org/10.1016/S0010-2180(99)00140-6
  27. Sohn, C. H., Seol, W. -S., Shibanov, A. A. and Pikalov, V. P., 2004, 'On the Method for Hot-Fire Modeling of High-Frequency Combustion Instability in Liquid Rocket Engines,' KSME International Journal, Vol. 18, No.6, pp. 1010-1018
  28. Westbrook, C. K. and Dryer, F. L., 1981, 'Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames,' Combustion Science and Technology, Vol. 27, pp. 31-43 https://doi.org/10.1080/00102208108946970
  29. Williams, F. A., 1985, Combustion Theory, 2nd ed., Addison-Wesley, Menlo Park, CA.
  30. Zucrow, M. J. and Hoffman, J. D., 1977, Gas Dynamics, Vol. II, John Wiley & Sons, Inc., New York