DOI QR코드

DOI QR Code

Temperature Tolerance and Physiological Changes of Blood Cockle, Tegillarca granosa

꼬막, Tegillarca granosa의 수온내성과 생리적 변화

  • Published : 2005.08.01

Abstract

For blood cockle Tegillarca granosa acclimated to winter and summer seasons, survival, temperature tolerance and physiological changes at different individual size were investigated for their temperature tolerances by increasing and decreasing temperature at a rate of 1, 2 and $3^{\circ}C/day$. The survival rate of adults and juveniles T. granosa acclimated to winter temperatures began to decrease from $32^{\circ}C$ and all experimental animals died between $37-39^{\circ}C$. In the case of animals acclimated to summer temperatures, the survival rates of adults and juveniles began to decrease from $35^{\circ}C$, and all died at temperatures between $40-44^{\circ}C$. The upper $LT_{50}$ was $27.72^{\circ}C$ for adults and $28.36^{\circ}C$ for juveniles. On the other hand, when the temperature was decreased from $4^{\circ}C\;to\;0^{\circ}C$ in order to investigate lower temperature tolerances, the survival rate of T. granosa was more than $70\%\;at\;2^{\circ}C$ for 25 days. Lower L T 50 was $2.09^{\circ}C$ for adults and $2.34^{\circ}C$ for juveniles. There was no effective difference in temperature tolerance between adults and juveniles. Filtration and respiration rates of T. granosa showed a similar aspect with increase and decrease of temperature. Filtration and respiration rates exhibited irregular conditions of a broken biological rhythm as the group acclimated to winter $(10 ^{\circ}C)$ and summer $(25^{\circ}C)$. In the case of decreasing temperature, filtration and respiration rates of T. granosa reduced to a minimum below $6^{\circ}C$

Keywords

References

  1. Ansell, A.D. and A. McLachlan. 1980. Upper temperature tolerances of three molluscs from South African sandy beaches. J. Expt. Mar. Biol. Ecol. 48, 3, 243-251 https://doi.org/10.1016/0022-0981(80)90079-9
  2. Ansell, A.D., P.R. Barnett, A. Bodoy and H. Masse. 1980. Upper temperature tolerance of some European molluscs. II. Donax vittatus, D. semistriatus and D. trunculus. Mar. Biol., 58, 41-46 https://doi.org/10.1007/BF00386878
  3. Aarset, A.V. 1982. Freezing tolerance in intertidal invertebrates. Com. Biochem. Physiol., Part A: Physiology, 73, 571-580 https://doi.org/10.1016/0300-9629(82)90264-X
  4. Brand, A.R. and D.J. Morris. 1984. The respiratory responses of the dog cockle Glycymeris glycymeris (L.) to declining environmental oxygen tension. J. Expt. Mar. Biol. Ecol., 83, 89-106 https://doi.org/10.1016/0022-0981(84)90119-9
  5. Chen, J.C. and w.C. Chen. 1999. Temperature tolerance of Haliotis diversicolor supertexta at different salinity and temperature levels. Comp. Biochem. Physiol. Part A: Physiol., 124, 73-80
  6. Cole, H.A. and B.T. Hepper. 1954. The use of neutral red solution for the comparative study of filtration rate of Lamelli brandls. J. Cons Int. Expl. Mer., 20, 197-203 https://doi.org/10.1093/icesjms/20.2.197
  7. Davenport, J. and T.M. Wong. 1986. Responses of the blood cockle Anadara granosa (L.) (Bivalvia: Arcidae) to salinity, hypoxia and aerial exposure. Aquaculture, 56, 151-162 https://doi.org/10.1016/0044-8486(86)90024-4
  8. Finney, D.J. 1971. Probit Analysis, 3rd ed., Cambridge University Press, London, pp. 333
  9. Jansson, B.O. 1967. Diurnal and annual variation of temperature and salinity of interstitial water in sandy beaches. Ophelia, 4, 173-201 https://doi.org/10.1080/00785326.1967.10409619
  10. Johnson, R.G. 1965. Temperature variation in the infauna1 environment of a sand flat. Limnol. Oceanogr., 10, 114-120 https://doi.org/10.4319/lo.1965.10.1.0114
  11. Krogh, A. 1914. The quantitative relation between temperature and standard metabolism in animals. Intern. Z. Physik. Chem. Biol., 1, 491-508
  12. Leighton, D.L., M.J. Byhower, J.C. Kelly, G.N. Hooker and D.E. Morse. 1981. Acceleration of development and growth in young green abalone (Haliotis fulgens) using warmed effluent seawater. J. World Maricult. Soc., 12, 170-180
  13. Manush, S.M., A.K. Pal, N. Chatterjee, T. Das and S.C. Mukherjee. 2004. Thermal tolerance and oxygen consumption of Maerobraehium resenbergii acclimated to three temperatures. J. Therm. Biol., 29, 15-19 https://doi.org/10.1016/j.jtherbio.2003.11.005
  14. Menasveta, P. 1981. Lethal temperature of marine fishes of the Gulf of Thailand. J. Fish. Biol., 18, 603-607 https://doi.org/10.1111/j.1095-8649.1981.tb03800.x
  15. Morritt, D. and A. Ingolfsson. 2000. Upper thermal tolerances of the beachflea Orehestia gammarellus (Pallas) (Crustacea: Amphipoda: Talitridae) associated with hot springs in Iceland. J. Expt. Mar. Biol. Ecol., 255, 215-227 https://doi.org/10.1016/S0022-0981(00)00299-9
  16. Newcombe, C.L., C.E. Miller and D.W. Chappel. 1936. Preliminary report on respiratory studies in Littorina irrorata, Nature, 137, 33
  17. Read, K.R.H. 1962. Respiration of the bivalve molluscs Mytilus edulis L. and Braehidontes demissus plieatulus Lam. as a function of size and temperature. Comp. Biochem. Physiol., 7, 89-101 https://doi.org/10.1016/0010-406X(62)90031-2
  18. Read, K.R.H. and K.B. Cumming. 1967. Thermal tolerance of the bivalve molluscs Modiolus modiolus L., Mytilus edulis L. and Braehidonetes demissus dillwyn. Com. Biochem. Physiol., 22, 149-155 https://doi.org/10.1016/0010-406X(67)90176-4
  19. Procarione, L.S. and T.L. King. 1993. Upper and lower temperature tolerance limits for juvenile red drum in Texas and South Carolina. J. Aqua. Ani. Health, 5, 208-212 https://doi.org/10.1577/1548-8667(1993)005<0208:UALTTL>2.3.CO;2
  20. Shin, Y.K., T.S. Moon and C.H. Wi. 2002. Effects of the dissolved oxygen consumption on the physiology of Tegillarea granosa (Linnaeus). J. Kor. Fish. Soc., 35, 485-489
  21. Shin, Y.K., Y. Kim, E.Y. Chung and S.B. Hur. 2000. Temperature and salinity tolerance of the Manila clam, Ruditapes philippinarum. J. Kor. Fish. Soc., 34, 190-193
  22. Smith, H. 1965. Some experiments on the oxygen consumption of goldfish (Carassius auratus) in relation to swimming speed. Can. J. Zool., 43, 623-633 https://doi.org/10.1139/z65-063
  23. Urban, H.I. 1994. Upper temperature tolerance of ten bivalve species off Peru and Chile related to El Nino. Mar. Ecol. Prog. Ser., 107, 139-145 https://doi.org/10.3354/meps107139
  24. von Brand, T. Nolan and E.R. mann. 1948. Observations on the respiration of Australorbis glabratus and some other aquatic snails. Biol. Bull., 95, 199-213 https://doi.org/10.2307/1538025
  25. Widdows, J. 1976. Physiological adaptation of Mytilus edulis to cyclic temperatures. J. Comp. Physiol., 105, 115-128 https://doi.org/10.1007/BF00691115
  26. Wilson, J.G. and B. Elkaim. 1991. Tolerances to high temperature of infaunal bivalves and the effect of geographical distribution, position on the shore and season. J. Mar. Biol. Ass. U.K., 71, 169-177 https://doi.org/10.1017/S0025315400037486
  27. Yin, B., Y. Teng and Y. Jiang. 1994. Studies on transportation and handling of the live Area granosa. Shandong Fish. Qilu Yuye, 11, 6-8

Cited by

  1. Changes of Survival Rate, Falling Rate and Foot Histology of the Abalone, Haliotis discus hannai (Ino, 1952) with Water Temperature and Salinity vol.29, pp.4, 2013, https://doi.org/10.9710/kjm.2013.29.4.303
  2. A Study on Suitable Site Selection of Blood Clams (Tegillarca granosa) using Habitat Suitability Factors in Tidal Flat, Cheonsu and Garolim Bays vol.24, pp.6, 2018, https://doi.org/10.7837/kosomes.2018.24.6.764
  3. Assessment of Locational Suitability of Aquaculture Grounds in Jeonnam Coastal Area Using the Regular Monitoring Data vol.32, pp.3, 2020, https://doi.org/10.13000/jfmse.2020.6.32.3.652
  4. Kondisi Biometrik Kerang Darah, Tegillarca granosa, di Pesisir Pantai Utara Kota Banda Aceh vol.26, pp.4, 2021, https://doi.org/10.18343/jipi.26.4.620