Precision Nanometrology and its Applications to Precision Nanosystems

  • Gao Wei (Department of Nanomechanics. Tohoku University)
  • Published : 2005.10.01

Abstract

In this paper, a new field of metrology called 'precision nanometrology' is presented. The 'precision nanometrology' is the result of evolutions of the traditional 'precision metrology' and the new 'nanometrology'. 'Precision nanometrology' is defined here as the science of dimensional measurement and motion measurement with 100 nm to 0.1 nm resolution/uncertainty within a range of micrometer to meter. The definition is based on the fact that nanometrology in nanoengineering and the precision industries, such as semiconductor industry, precision machine tool industry, precision instrument industry, is not only concerned with the measurement resolution and/or uncertainty but also the range of measurement. It should also be pointed out that most of the measurement objects in nanoengineering have dimensions larger than 1 micrometer. After explaining the definition of precision nanometrology, the paper provides several examples showing the critical roles of precision nanometrology in precision nanosystems, including nanometrology system, nanofabrication system, and nanomechatronics system.

Keywords

References

  1. Verdee, M. S., 'Nanometrology of optical flats by laser autocollimation,' Surface Topography, Vol. 1, pp. 415-425,1988
  2. Teague, E. C., 'Nanometrology,' Proceedings of AIP Conference, (1992), pp. 371-407
  3. Conclusions of the WGDM 3 Discussion Group on Nanometrology, 25 June, 1998
  4. Evans, C., 'Precision Engineering: an Evolutionary View,' Cranfield Press, 1989
  5. Sawabe, M., 'Benefit derived from the histroy of length measuring technology,' Bulletin of the Society of Historical Metrology, Japan, Vol. 22, No. 1, pp. 9-16, 2000 (in Japanese)
  6. Smith, S. T. and Chetwynd, D. G., 'Foundations of ultraprecision mechanism design,' Gordon and Breach Science Publishers, 1992
  7. Homepage of The Center For Precision Metrology, The University of North Carolina at Charlotte, http://www.cpm.uncc.edu/
  8. Whitehouse, D. J., 'Some theoretical aspects of error separation techniques in surface metrology,' J. of Phys. E: Sci. Instrum., Vol. 9, pp. 531-536, 1976 https://doi.org/10.1088/0022-3735/9/7/007
  9. Evans, Chris J., Hocken, R. J. and Estler, W. Tyler, 'Selfcalibration: Reversal, Redundancy, Error Separation and 'Absolute Testing,' Annals of CIRP, Vol. 45, No. 2, pp. 617-634, 1996 https://doi.org/10.1016/S0007-8506(07)60515-0
  10. Gao, W., Kiyono, S. and Nomura, T., 'A new multi-probe method of roundness measurements,' Precision Engineering, Vol. 19, No. 1 , pp. 37-45, 1996 https://doi.org/10.1016/0141-6359(96)00006-2
  11. Gao, W, 'Nanometrology of spindle errors using error separation methods,' J. JSPE, Vol. 67, No. 7, pp. 1067-1071, 2001
  12. Gao, W., Kiyono, S. and Sugawara, T., 'High accuracy roundness measurement by a new error separation method,' Precision Engineering, Vol. 21, No. 2/3, pp. 123-133, 1997 (in Japanese) https://doi.org/10.1016/S0141-6359(97)00081-0
  13. Gao, W. and Kiyono, S., 'Development of an optical probe for profile measurement of mirror surfaces,' Optical Engineering, Vol. 36, No. 12, pp. 3360-3366, 1997 https://doi.org/10.1117/1.601563
  14. Ennos, A.E. and Virdee, M.S., 'High accuracy profile measurement of quasi-conical mirror surfaces by laser autocollimation,' Precision Engineering, Vol. 4, No. 1, pp. 5-8, 1982 https://doi.org/10.1016/0141-6359(82)90106-4
  15. Gao, W., Kiyono, S. and Satoh, E., 'Precision measurement of multi-degree-of-freedom spindle errors using two-dimensional slope sensors,' Annals of CIRP, Vol. 51, No. 1, pp. 447-450, 2002 https://doi.org/10.1016/S0007-8506(07)61557-1
  16. Zhang, G. X. and Wang, R. K., 'Four-point method of roundness and spindle error measurements,' Annals of the CIRP, Vol. 42, No. 1, pp. 593-596, 1993 https://doi.org/10.1016/S0007-8506(07)62517-7
  17. Gao, W., Huang, P. S., Yamada, T. and Kiyono, S., 'A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,' Precision Engineering, Vol. 26, No. 4, pp. 396-404, 2002 https://doi.org/10.1016/S0141-6359(02)00121-6
  18. Gao, W., Yamada, T., Furukawa, M., Nakamura, T., Shimizu, H. and Kiyono, S., 'Precision nanometrology of large silicon wafer flatness,' Journal of Nanotechnology and Precision Engineering, Vol. 1, No. 1, pp. 71-78, 2003
  19. Gao, W., 'Nano-metrology of large surface profiles using angle sensors,' J. JSPE, Vol. 68, No. 3, pp. 367-371, 2002 (in Japanese)
  20. Gao, W., Yokoyama, J., Kojima, H. and Kiyono, S., 'Precision measurement of cylinder straightness using a scanning multi-probe system,' Precision Engineering, Vol. 26, No. 3 ,pp. 279-288, 2002
  21. Gao, W., Hocken, R. J., Patten, J. A., Lovingood, J. and Lucca, D. A, 'Construction and testing of a nanomachining instruments,' Precision Engineering, Vol. 24, No. 4 , pp. 320-328, 2000 https://doi.org/10.1016/S0141-6359(00)00042-8
  22. Gao, W., Hocken, R. J., Patten, J. A. and Lovingood, J., 'Experiments using a nano-machining instruments for nanocutting brittle materials,' Annals of CIRP, Vol. 49, No. 1, pp. 439-442, 2000 https://doi.org/10.1016/S0007-8506(07)62984-9
  23. Gao, W., Hocken, R. J., Patten, J. A. and Lovingood, J.,'Force measurement in a nanomachining instruments,' Review of Scientific Instruments, Vol. 71, No. 11, pp. 4325-4329, 2000 https://doi.org/10.1063/1.1319976
  24. Patten, J. A. and Gao, W., 'Extreme negative rake angle technique for single point diamond nano-cutting of silicon,' Precision Engineering, Vol. 25, No. 2, pp. 165-167, 2001 https://doi.org/10.1016/S0141-6359(00)00072-6
  25. Patterson, S. R. and Magrab, E. B., 'Design and testing of a fast tool servo for diamond turning,' Prec. Eng., Vol. 7, No. 3, pp. 123-128, 1985 https://doi.org/10.1016/0141-6359(85)90030-3
  26. Dow, T. A, Miller, M. H. and Falter, P. J., 'Application of a fast tool servo for diamond turning of nonrotationally symmetric surfaces,' Precision Engineering, Vol. 13, No. 4, pp. 233-250, 1991
  27. Okazaki, Y., 'Fast tool servo system and its application to three dimensional fine figures,' Proc. of 13th ASPE, pp. 100-103, 1998
  28. Gao, W., Araki, T., Kiyono, S., Okazaki, Y. and Yamanaka, M., 'Precision Nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,' Precision Engineering, Vol. 27, No. 3, pp. 289-298, 2003 https://doi.org/10.1016/S0141-6359(03)00028-X
  29. Gao, W., Araki, T. and Kiyono, S., 'Precision nanometrology of a large area microstructured metrology surface,' Optics and Precision Engineering, Vol. 11, No. 3, pp. 223-226, 2003
  30. Kiyono, S., Cai, P. and Gao, W., 'An angle-based position detection method for precision machines,' JSME International Journal, Vol. 42, No. 1, pp. 44-48, 1999
  31. Gao, W., Dejima, S., Shimizu, Y. and Kiyono, S., 'Precision measurement of two-axis positions and tilt motions using a surface encoder,' Annals of CIRP, Vol. 52, No. 2, pp. 435-438, 2003 https://doi.org/10.1016/S0007-8506(07)60619-2
  32. Gao, W., Nakada, T. and Kiyono, S., 'Precision positioning of a surface motor-driven multi-axis stage using a surface encoder,' Journal JSPE, Vol. 67, No. 12, pp. 1981-1985, 2001. (in Japanese)
  33. Gao, W., Dejima, S., Yanai, H., Katakura, K., Kiyono, S., Y. Tomita, 'A surface motor-driven planar motion stage integrated with an XY$\theta_z$ surface encoder for precision positioning,' Precision Engineering, 28-3, pp. 329-337, 2004