Nature of a Root-Associated Paenibacillus polymyxa from Field-Grown Winter Barley in Korea

  • RYU CHOONG-MIN (Department of Applied Biology and Environmental Science, College of Agriculture and Life Sciences, Gyeongsang National University, Laboratory of Microbial Genomics, Korea Research Institute of Bioscience & Biotechnology) ;
  • KIM JINWOO (Department of Applied Biology and Environmental Science, College of Agriculture and Life Sciences, Gyeongsang National University) ;
  • CHOI OKHEE (Department of Applied Biology and Environmental Science, College of Agriculture and Life Sciences, Gyeongsang National University) ;
  • PARK SOO-YOUNG (Laboratory of Microbial Genomics, Korea Research Institute of Bioscience & Biotechnology) ;
  • PARK SEUNG-HWAN (Laboratory of Microbial Genomics, Korea Research Institute of Bioscience & Biotechnology) ;
  • PARK CHANG-SEUK (Department of Applied Biology and Environmental Science, College of Agriculture and Life Sciences, Gyeongsang National University)
  • Published : 2005.10.01

Abstract

Soil or seed applications of plant growth-promoting rhizobacteria (PGPR) have been used to enhance growth of several crops as well as to suppress the growth of plant pathogens. In this study, we selected a PGPR strain, Paenibacillus polymyxa strain E681, out of 3,197 heat-stable bacterial isolates from winter wheat and barley roots. Strain E681 inhibited growth of a broad spectrum plant pathogenic fungi in vitro, and treatment of cucumber seed with E681 reduced incidence of damping-off disease caused by Pythium ultimum, Rhizoctonia solani, or Fusarium oxysporum. When inoculated onto seeds as vegetative cells or as endospores, E681 colonized whole cucumber root systems and root tips. Different temperatures such as $20^{\circ}C\;and\;30^{\circ}C$ did not affect root colonization by strain E681. This colonization was associated with a consistent increase in foliar growth of cucumber in the greenhouse. These results indicate that strain E681 is a promising PGPR strain for application to agricultural systems, particularly during the winter season.

Keywords

References

  1. Ash, C., F. G. Priest, and M. D. Collins. 1993. Molecular identification of rRNA group 3 Bacilli [Ash, Farrow, Wall banks and Collins] using a PCR probe test; proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64: 253-260 https://doi.org/10.1007/BF00873085
  2. Ahmad, J. S. and R. Baker. 1987. Rhizosphere competence in Trichoderma harzianum. Phytopathology 77: 192-189
  3. Chanway, C. P. 1997. Introduction of tree roots with plant growth promoting soil bacteria: An emerging technology for reforestation. Forest Sci. 43: 99-112
  4. Choi, O., J. Kim, C-M. Ryu, and C. S. Park. 2004. Colonization and population changes of a biocontrol agent, Paenibacillus polymyxa E681, in seeds and roots. Plant Pathol. J. 20: 97-102 https://doi.org/10.5423/PPJ.2004.20.2.097
  5. Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31: 53-80 https://doi.org/10.1146/annurev.py.31.090193.000413
  6. Dijksterhuis, J., M. Sanders, L. G. Gorris, and E. J. Smid. 1999. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J. Appl. Microbiol. 86: 13-21 https://doi.org/10.1046/j.1365-2672.1999.t01-1-00600.x
  7. Emmert, E. A. and J. Handelsman. 1999. Biocontrol of plant disease: A [gram-] positive perspective. FEMS Microbiol. Lett. 171: 1-9 https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  8. Faure, J-D. and S. H. Howell. 1999. In P. J. J. Hooykaas, M. A. Hall, and K. R. Libbenga (eds.). Biochemistry and Molecular Biology of Plant Hormones, pp. 461-474. Marcel Dekker, Inc., New York, U.S.A
  9. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microiol. 41: 109-117 https://doi.org/10.1139/m95-015
  10. Glick, B. R. 1999. In Glick, B. R., Patten, C. N., Holguin, G. and Penrose, D. M. (eds.). Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria, pp. 1-13. Imperial College Press, London
  11. Handelsman, J. and K. Stabb. 1996. Biocontrol of soil-borne plant pathogens. Plant Cell 8: 1855-1869 https://doi.org/10.1105/tpc.8.10.1855
  12. Helbig, J. 2001. Biological control of Botrytis cinerea Pers. Ex Fr. in strawberry by Paenibacillus polymyxa isolate 18091. J. Phytopathol. 149: 265-273 https://doi.org/10.1046/j.1439-0434.2001.00609.x
  13. Holl, F. B., C. P. Chanway, R. Turkington, and R. A. Radley. 1988. Response of crested wheat grass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa . Soil Biol. Biochem. 20: 19-24 https://doi.org/10.1016/0038-0717(88)90121-6
  14. Jacobsen, B. J., N. K. Zidack, and B. J. Larson. 2004. The role of Bacillus-based biological control agents in integrated pest management systems: Plant diseases. Phytopathology 94: 1272-1275 https://doi.org/10.1094/PHYTO.2004.94.11.1272
  15. James, E. K. and F. L. Olivares. 1998. Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit. Rev. Plant Sci. 17: 77-119 https://doi.org/10.1016/S0735-2689(98)00357-8
  16. Jung, W.-J., S.-J. Jung, K.-N. An, Y.-L. Jin, R.-D. Park, K.-Y. Kim, B.-K. Shon, and T.-H. Kim. 2002. Effect of chitinase-producing Paenibacillus illinoisensis KJA-424 on egg hatching of root-knot nematode (Meloidogyne incognita). J. Microbiol. Biotechnol. 12: 865-871
  17. Katiyar, V. and R. Goel. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657
  18. Kang, J. H. and C. S. Park. 1997. Colonization pattern of fluorescent Pseudomonads on the cucumber seed and rhizoplane. Korean J. Plant Pathol. 13: 160- 166
  19. Kim, D.-S., R. J. Cook, and D. M. Weller. 1997. Bacillus sp. L324-92 for biological control of three root diseases of wheat growth with reduced tillage. Phytopathology 87: 551-558 https://doi.org/10.1094/PHYTO.1997.87.5.551
  20. Kim, D.-S., D. M Weller, and R. J. Cook, 1997. Population dynamics of Bacillus sp. L324-$92R_{12}$ and Pseudomonas fluorescens 2-$79RN_{10}$ in rhizosphere of wheat. Phytopathology 87: 559-564 https://doi.org/10.1094/PHYTO.1997.87.5.559
  21. Kloepper, J. W., R. M. Zablotowicz, E. M. Tipping, and R. Lifshitz. 1991. In Keister, K. L. and P. B. Cregan (eds.). The Rhizosphere and Plant Growth, pp. 315-326. Kluwer. Academic Publishers, Dordecht, U.S.A
  22. Kloepper, J. W. 1992. Plant growth-promoting rhizobacteria as biological control agents, pp. 255-274. In Metting, F. B. Jr. (ed.). Soil Microbial Ecology: Applications in Agricultural and Environmental Management. Marcel Dekker Inc., NY, U.S.A
  23. Kloepper, J. W., R. Rodriguez-Kabana, G. W. Zehnder, J. Murphy, E. Sikora, and C. Fernandez. 1999. Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Austral. J. Plant Pathol. 28: 27-33 https://doi.org/10.1071/AP99004
  24. Kloepper, J. W., C.-M. Ryu, and. S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266 https://doi.org/10.1094/PHYTO.2004.94.11.1259
  25. Lebuhn, M., T. Heulin, and A. Hartmann. 1997. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol. Ecol. 22: 325-334 https://doi.org/10.1111/j.1574-6941.1997.tb00384.x
  26. Maplestone, P. A. and R. Campbell. 1989. Colonization of root of wheat seedlings Bacillus proposed as biocontrol agents against take-all. Soil Biol. Biochem. 21: 524-550
  27. McSpadden-Gardener, B. B. 2004.The nature and application ofbiocontrol microbes: Bacillus spp. ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94: 1252-1258 https://doi.org/10.1094/PHYTO.2004.94.11.1252
  28. Lucy, M., E. Reed, and B. R. Glick. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek 86: 1-25 https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
  29. Mavingui, P. and T. Heulin. 1994. In vitro chitinase and antifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus polymyxa. Soil Biol. Biochem. 26: 801-803 https://doi.org/10.1016/0038-0717(94)90277-1
  30. Nakashimada, Y, B. Marwoto, T. Kashiwamura, T. Kakizono, and N. Nishiol. 2000. Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa. J. Biosci. Bioeng. 90: 661-664 https://doi.org/10.1263/jbb.90.661
  31. Park, C. S., T. C. Paulitz, and R. Baker. 1988. Biocontrol of Fusarium wilt of cucumbers resulting from interactions between Pseudomonas putida and nonpathogenic isolates of Fusarium oxysporium. Phytopathology 78: 190-194 https://doi.org/10.1094/Phyto-78-190
  32. Silva, K. R. A. D., J. Falcao Salles, L. Seldin, and J. D. van Elsas. 2003. Application of a novel Paenihacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere J. Microbiol. Methods 54: 213-231 https://doi.org/10.1016/S0167-7012(03)00039-3
  33. Rovira, A. D. 1963. Microbial inoculation of plants. 1. Establishment of free-living nitrogen-fixing bacteria in the rhizosphere and their effects on maize, tomato, and wheat. Plant Soil 19: 304-314 https://doi.org/10.1007/BF01379484
  34. Ryu, C.-M., M. A. Farag, C.-H. Hu, M. S. Reddy, H. X. Wei, P. W. Pare, and J. W. Kloepper. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100: 4927-4932
  35. Ryu, C.-M., C. H. Hu, M. S. Reddy, and J. W. Kloepper. 2003. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol. 160: 413-420 https://doi.org/10.1046/j.1469-8137.2003.00883.x
  36. Ryu, C.-M., M. Farag, C. H. Hu, M. S. Reddy, P. Pare, and J. W. Kloepper. 2004. Bacterial volatiles induced systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026 https://doi.org/10.1104/pp.103.026583
  37. Ryu, C.-M., C. H. Hu, R. D. Locy, and J. W. Kloepper. 2004. Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 286: 285-292
  38. Schaad, N. W. (ed.). 1996. Laboratory Guide for Identification of Plant Pathogenic Bacteria. Americain Phytopathology Society, St. Paul. U.S.A
  39. Sneath, P. H. A. 1986. Endospore forming gram-positive rod and cocci, pp. 1104-1137. In Krieg, J. R. and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, Vol. 2. Williams and Wilken, Baltimore, MD, U.S.A
  40. Timmusk, S., B. Nicander, U. Granhall, and E. Tillberg. 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 31: 1847-1852 https://doi.org/10.1016/S0038-0717(99)00113-3
  41. Timmusk, S. and E. G. H. Wagner. 1999. The plant growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: A possible connection between biotic and abiotic stress responses. Mol. Plant Microbe Interact. 12: 951-959 https://doi.org/10.1094/MPMI.1999.12.11.951
  42. Van der Weid, I., G. F. Duarte, J. D. van Elsas, and L. Seldin. 2002. Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int. J. Syst. Evol. Microbiol. 52: 2147-2153 https://doi.org/10.1099/ijs.0.02272-0
  43. Van Loon, L. C., P. A. H. M. Bakker, and C. M. J. Pierterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopath. 36: 453-483 https://doi.org/10.1146/annurev.phyto.36.1.453
  44. Vogler, K. and R. O. Studer. 1966. The chemistry of the polymyxin antibiotics. Experientia 6: 345-416
  45. Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26: 379-407 https://doi.org/10.1146/annurev.py.26.090188.002115