Isolation, Identification, and Characterization of Aero-Adaptive Campylobacter jejuni

  • LEE YOUNG-DUCK (Department of Food and Bioengineering, Kyungwon University) ;
  • MOON BO-YOUN (Department of Food and Bioengineering, Kyungwon University) ;
  • CHOI JUNG-PIL (Department of Food and Bioengineering, Kyungwon University) ;
  • CHANG HAK-GIL (Department of Food and Bioengineering, Kyungwon University) ;
  • NOH BONG-SOO (Department of Food Science, Seoul Women's University) ;
  • PARK JONG-HYUN (Department of Food and Bioengineering, Kyungwon University)
  • Published : 2005.10.01

Abstract

Campylobacter is one of the emerging foodborne pathogens, and its worldwide incidence rate is extremely high. This study was undertaken to isolate and identify Campylobacter strains from chicken carcasses in the local markets, and analyze their characteristics regarding oxygen tolerance. They were isolated after aerobic enrichment and identified by biochemical, physiological, and morphological characteristics, PCR, and 16S rDNA sequencing. Their oxygen tolerances were analyzed in terms of the cell surface hydrophobicity, cell fatty acid composition, and oxidoreductase. Five strains of C. jejuni were isolated and identified from 61 isolates from 50 chickens. Among them, C. jejuni IC21 grew well in Brucella broth and commercial milk under aerobic condition. However, in the aerobic exposure, the cell surface hydrophobicity of C. jejuni IC21 was almost the same as the other isolates, even though its morphology changed from the spiral-bacilli form into the coccoid form. Fatty acid analyses showed that all Campylobacter strains had a high composition of $C_{19:1}$, cyclopropane fatty acid, and that the amount of the other fatty acids were very similar between them. Interestingly, however, only oxidoreductase activities of C. jejuni IC21 increased highly under aerobic exposure even though its activities were almost the same as the other C. jejuni strains just after microaerobic culture. It had 11.8 times higher catalase activity, 4.4 times higher for SOD, and 2.0 times higher for NADH oxidase activities. Therefore, in the case of the aero-adaptive C. jejuni IC21, expression of oxidoreductase significantly increased under oxidative stressed condition, which might allow it to survive for a longer time and grow on food under aerobic exposure. Such new strain might be one of the explanations for the increase of campylobacteriosis.

Keywords

References

  1. Ahn, J. B., K. Y. Kim, and J. H. Park. 1998. Isolation and characterization of oxygen-tolerant mutant of Bifidobacterium longum. Kor. J. Appl. Microbiol. Biotechnol. 26: 476-482
  2. Arnoud, H. M. V., M. K. Julian, S. F. Park, and W. P. Charles. 2002. The role of iron in Campylobacter gene regulation, metabolism and oxidative stress defense. FEMS Microbiol. Rev. 26: 173-186 https://doi.org/10.1111/j.1574-6976.2002.tb00609.x
  3. Beers, R. F. and I. W. Sizer. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195: 133-140
  4. Blaser, M. J., H. L. Hardesty, B. Powers, and W. L. Wang. 1980. Survival of Campylobacter fetus subsp. jejuni in biological milieus. J. Clin. Microbiol. 27: 309
  5. Cappelier, J. M., C. Magras, J. L. Jouve, and M. Federighi. 1999. Recovery of viable but non-culturable Campylobacter jejuni cells in two animal models. Food Microbiol. 16: 375-383 https://doi.org/10.1006/fmic.1998.0246
  6. Centers for Disease Control and Prevention. 2001. Diagnosis and management of foodborne illnesses. Recommendations and Reports 50: 1-69
  7. Cho, S. Y., B. K. Park, K. D. Moon, and D. H. Oh. 2004. Prevalence of listeria monocytogenes and related species in minimally processed vegetables. J. Microbiol. Biotechnol. 14: 515-519
  8. Chynoweth, R. W., J. A. Hudson, and K. Thom. 1998. Aerobic growth and survival of Campylobacter jejuni in food and stream water. Lett. Appl. Microbiol. 27: 341-344 https://doi.org/10.1046/j.1472-765X.1998.00453.x
  9. Dominguez, C., I. Gomez, and J. Zumalacarregui. 2002. Prevalence of Salmonella and Campylobacter in retail chicken meat in spain. Int. J. Food Microbiol. 72: 165-168 https://doi.org/10.1016/S0168-1605(01)00638-9
  10. Food and drug administration. 1995. Bacteriological Analytical Manual, 8th ed., AOAC International, Maryland, U.S.A
  11. Frost, J. A. 2001. Current epidemiological issues in human campylobacteriosis. J. Appl. Microbiol. 90: 85S-95S https://doi.org/10.1046/j.1365-2672.2001.01357.x
  12. Giesendorf, B. A. J., W. G. V. Quint, M. H. C. Henkens, H. Stegement, F. A. Huf, and H. G. M. Niesters. 1992. Rapid and sensitivity detection of Campylobacter spp. in chicken products by using the polymerase chain reaction. Appl. Env. Microbiol. 58: 3804-3808
  13. Jones, D. M., E. M. Sutcliffe, R. Rios, A. J. Fox, and A. Curry. 1993. Campylobacter jejuni adapts to aerobic metabolism in the environment. J. Med. Microbiol. 38: 145-150 https://doi.org/10.1099/00222615-38-2-145
  14. Kelly, A. F., S. F. Park, R. Bovill, and B. M. Mackey. 2001. The survival of Campylobacter jejuni during stationary phase: Evidence for the absence of a phenotypic stationary phase response in C. jejuni. Appl. Environ. Microbiol. 67: 2248-2254 https://doi.org/10.1128/AEM.67.5.2248-2254.2001
  15. Kell, D. B. and M. Young. 2000. Bacterial dormancy and culturability: The role of autocrine growth factors: Commentary. Curr. Opin. Microbiol. 3: 238-243 https://doi.org/10.1016/S1369-5274(00)00082-5
  16. Kim, N. K., J. C. Yoo, H. K. Park, T. R. Hae, and J. S. So. 1998. The relationship between cell surface hydrophobicity (CSH) and stress tolerance in Bifidobacterium spp. Food Sci. Biotechnol. 7: 66-70
  17. Lascelles, J. and K. M. Calder. 1985. Participation of cytochromes in some oxidation-reduction systems In Campylobacter fetus. J. Bacteriol. 164: 401-409
  18. Lemke, M. J., P. F. Churchill, and R. G. Wetzel. 1995. Effect of substrate and cell surface hydrophobicity on phosphate utilization in bacteria. Appl. Env. Microbiol. 61: 913-919
  19. Lopez de Felipe, F. and J. Hugenholtz. 2001. Purification and characterisation of the water forming NADH-oxidase from Lactococcus lactis. Int. J. Dairy 11: 37-44 https://doi.org/10.1016/S0958-6946(01)00031-0
  20. MacCord, J. and I. Fridovich. 1988. The utility of superoxide dismutase in studying free radical reactions. II. The mechanism of the mediation of cytochrome c reduction by variety of electron carriers. J. Biol. Chem. 254: 1374
  21. Marshall, S. M., P. L. Melito, D. L. Woodward, W. M. Johnson, F. G. Rodgers, and M. R. Mulvey. 1999. Rapid identification of Campylobacter, Arcobacter, and Helicobacter isolates by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene. J. Clin. Microbiol. 37: 4158-4160
  22. McDougald, D., S. A. Rice, D. Weichart, and S. Kjelleberg. 1998. Nonculturability: Adaptation or debilitation? FEMS Microbiol. Ecol. 25: 1-9 https://doi.org/10.1111/j.1574-6941.1998.tb00455.x
  23. Nachamkin, I. 2002. Chronic effects of Campylobacter infection. Microbes Infect. 4: 399-403 https://doi.org/10.1016/S1286-4579(02)01553-8
  24. On, S. L. W. 2001. Taxonomy of Campylobacter, Arcabacter, Helicobacter and related bacteria: Current status, future prospects and immediate concern. J. Appl. Microbiol. 90: 1S-15S https://doi.org/10.1046/j.1365-2672.2001.01349.x
  25. Park, S. F. 2002. The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int. J. Food Microbiol. 74: 177-188 https://doi.org/10.1016/S0168-1605(01)00678-X
  26. Parkhill, J., B. W. Wren, K. Mungall, J. M. Ketley, C. Churcher, D. Basham, T. Davies, R. M. Chillingworth, T. Feltwell, S. Holroyd, K. Jagels, A. V. Karlyshev, S. Moule, M. J. Pallen, C. W. Penn, M. A. Quail, M. A. Rajandream, K. M. Rutherford, A. H. van Vliet, S. Whitehead, and B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665-668 https://doi.org/10.1038/35001088
  27. Park, K. J., S. H. Kim, M. G. Kim, D. H. Chung, S. D. Ha, K. S. Kim, D. J. Jahng, and K. H. Lee. 2004. Functional complementation of Escherichia coli by the rpoS gene of the foodborne pathogenic Vibrio vulnificus. J. Microbiol. Biotechnol. 14: 1063-1066
  28. Reezal, A., B. McNeil, and J. G. Anderson. 1998. Effect of low-osmolality nutrient media on growth and culturability of Campylobacter species. Appl. Envir. Microbiol. 64: 4643-4649
  29. Rhee, J. E., H. M. Ju, U. R. Park, B. Ch. Park, and S. H. Choi. 2004. Identification of the Vibrio vulnificus cadC and evaluation of its role in acid tolerance. J. Microbiol. Biotechnol. 14: 1093-1098
  30. Rosenquist, H., N. L. Nielsen, H. M. Sommer, B. Norrung, and B. B. Christensen. 2003. Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. Int. J. Food Microbiol. 83: 87-103 https://doi.org/10.1016/S0168-1605(02)00317-3
  31. Shin, S. Y. and J. H. Park. 1998. Changes of oxidative stress enzymes and fatty acid composition of Bifidobacterium adolscentis and B. longum under anaerobic and aerated conditions. Kor. J. Appl. Microbiol. Biotechnol. 26: 7-14
  32. Shin, S. Y., J. H. Park, and W. J. Kim. 1999. Specific detection of enteropathogen Campylobacter jejuni in food using a polymerase chain reaction. J. Microbiol. Biotechnol. 9: 184-190
  33. Smith, M. A., M. Finel, V. Korolik, and G. L. Mendz. 2000. Characteristics of the aerobic respiratory chains of the microaerophiles Campylobacter jejuni and Helicobacter pylori. Arch. Microbiol. 174: 1-10 https://doi.org/10.1007/s002030000174
  34. Tholozan, J. L., J. M. Cappelier, J. P. Tissier, G. Delattre, and M. Federrichi. 1999. Physiological characterization of viable but nonculturable Campylobacter jejuni cells. Appl. Envir. Microbiol. 65: 111-1116
  35. Tran, T. T. 1998. A blood-free enrichment medium for growing Campylobacter spp. under aerobic conditions. Lett. Appl. Microbiol. 26: 145-148 https://doi.org/10.1046/j.1472-765X.1998.00295.x
  36. Van Loosderecht, M. C. M., J. Lyklema, W. Norde, G. Schraa, and A. J. B. Zehnder. 1987. The role of bacterial cell wall hydrophobicity in adhesion. Appl. Envir. Microbiol. 53: 1893-1897
  37. Yousef, A. E. and V. K. Juneja. 2003. Microbial Stress Adaptation and Food Safety, pp. 303-351. CRC Press, Inc. Boca Raton, Florida, U.S.A