Gene Expression Profiling of Eukaryotic Microalga, Haematococcus pluvialis

  • EOM HYUNSUK (Department of Biotechnology, Department of Biological Engineering. Inha University) ;
  • PARK SEUNGHYE (Department of Life Science, College of Natural Science. Hanyang University) ;
  • LEE CHOUL-GYUN (Department of Biotechnology, Department of Biological Engineering. Inha University) ;
  • JIN EONSEON (Department of Life Science, College of Natural Science. Hanyang University)
  • Published : 2005.10.01

Abstract

Under environmental stress, such as strong irradiance or nitrogen deficiency, unicellular green algae of the genus Haematococcus accumulate secondary carotenoids, i.e. astaxanthin, in the cytosol. The induction and regulation of astaxanthin biosynthesis in microalgae has recently received considerable attention owing to the increasing use of secondary carotenoids as a source of pigmentation for fish aquacultures, and as a potential drug in cancer prevention as a free-radical quencher. Accordingly, this study generated expressed sequence tags (ESTs) from a library constructed from astaxanthin-induced Haematococcus pluvialis. Partial sequences were obtained from the 5' ends of 1,858 individual cDNAs, and then grouped into 1,025 non-overlapping sequences, among which 708 sequences were singletons, while the remainder fell into 317 clusters. Approximately $63\%$ of the EST sequences showed similarity to previously described sequences in public databases. H. pluvialis was found to consist of a relatively high percentage of genes involved in genetic information processing ($15\%$) and metabolism ($11\%$), whereas a relatively low percentage of sequences was involved in the signal transduction ($3\%$), structure ($2\%$), and environmental information process ($3\%$). In addition, a relatively large fraction of H. pluvialis sequences was classified as genes involved in photosynthesis ($9\%$) and cellular process ($9\%$). Based on this EST analysis, the full-length cDNA sequence for superoxide dismutase (SOD) of H. pluvialis was cloned, and the expression of this gene was investigated. The abundance of SOD changed substantially in response to different culture conditions, indicating the possible regulation of this gene in H. pluvialis.

Keywords

References

  1. Apel, H. and H. Hirt. 2004 Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373-399 https://doi.org/10.1146/annurev.arplant.55.031903.141701
  2. Bartley, G. E. and P. A. Scolnik. 1995. Pigments for photoprotection, visual attraction, and human health. Plant Cell 7: 1027-1038 https://doi.org/10.1105/tpc.7.7.1027
  3. Ben Amotz, A. and M. Avron. 1983. On the factors which detennine massive L-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol. 72: 593-597 https://doi.org/10.1104/pp.72.3.593
  4. Bevan, M. and The EU Arabidopsis Genome Project. 1998. Analysis of 1.9 Mb of contiguous sequence from chromosome4 of Arabidopsis thaliana. Nature 391: 485-488 https://doi.org/10.1038/35140
  5. Boguski, M. S., T. M. Lowe, and C. M. Tolstoshev. 1993. dbEST-Database for 'expressed sequence tags'. Nat. Genet. 4: 332-333 https://doi.org/10.1038/ng0893-332
  6. Boussiba, S. 2000. Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. Physiol. Plant 108: 111-117 https://doi.org/10.1034/j.1399-3054.2000.108002111.x
  7. Boussiba, S. and A. Vonshak. 1991. Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol. 32: 1077-1082 https://doi.org/10.1093/oxfordjournals.pcp.a078171
  8. Boussiba, S., B. Wang, P. P. Yuan, A. Zarka, and F. Chen. 1999. Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnol. Lett. 21: 601-604 https://doi.org/10.1023/A:1005507514694
  9. Boussiba, S., L. Fan, and A. Vonshak. 1992. Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. Methods Enzymol. 213: 386-391 https://doi.org/10.1016/0076-6879(92)13140-S
  10. Delseny, M., R. Cooke, M. Raynal, and F. Grellet. 1997. The Arabidopsis thaliana cDNA sequencing projects. FEBS Lett. 403: 221-224 https://doi.org/10.1016/S0014-5793(97)00075-6
  11. Endo, M., T. Kokubun, Y. Takahata, A. Higashitani, S. Tabata, and M. Watanabe. 2000. Analysis of expressed sequence tags of flower buds in Lotus japonicus. DNA Res. 7:213-216 https://doi.org/10.1093/dnares/7.3.213
  12. Harker, M., A. J. Tsavalos, and A. J. Young. 1996. Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 301 air-lift photobioreactor. J. Ferment. Bioeng. 82: 113-118 https://doi.org/10.1016/0922-338X(96)85031-8
  13. Henry, I. M., M. D. Wilkinson, J. M. Hernandez, Z. Schwarz-Sommer, E. Grotewold, and D. F. Mandoli. 2004. Comparison of ESTs from juvenile and adult phases of the giant unicellular green alga Acetabularia acetabulum. Plant Biol. 4(3): 1-15
  14. Jin, E. S., J. E. W. Polle, H. K. Lee, S. M. Hyun, and M. Chang. 2003. Xanthophylls in microalgae: From biosynthesis to biotechnological mass production and application. J. Microbiol. Biotechnol. 13: 165-175
  15. Kim, N.-K., J.-K. Lee, and C.-G. Lee. 2004. Pigment reduction to improve photosynthetic productivity of Rhodobacter sphaeroides. J. Microbiol. Biotechnol. 14: 442-450
  16. Kobayashi, M. 2003. Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotech. Bioproc. Engin. 8: 322-330 https://doi.org/10.1007/BF02949275
  17. Kobayashi, M., T. Kakizono, and S. Nagai. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microbiol. 59: 867-873
  18. Kobayashi, M., T. Kakizono, N. Nishio, S. Nagai, Y. Kurimura, and Y. Tsuji. 1997. Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 48: 351-356 https://doi.org/10.1007/s002530051061
  19. Lorenz, R. T. and G. R. Cysewski. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18: 160-167 https://doi.org/10.1016/S0167-7799(00)01433-5
  20. Nichols, H. W. and H. C. Bold. 1964. Trichsarcina polymorpha gen. et. nov. J. Phycol. 1: 34-38 https://doi.org/10.1111/j.1529-8817.1965.tb04552.x
  21. Niyogi, K. K. 1999. Photoprotection revisited: Genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 333-359 https://doi.org/10.1146/annurev.arplant.50.1.333
  22. Oh, K. S., O. S. Kwon, Y. W. Oh, M. J. Sohn, S. G. Jung, Y. K. Kim, M. G. Kim, S. K. Rhee, G. Gellissen, and H. A. Kang. 2004. Fabrication of a partial genome microarray of the methylotrophic yeast Hansenula polymorpha: Optimization and evaluation of transcript profiling. J. Microbiol. Biotechnol. 14: 1239-1248
  23. Orosa, M., D. Franqueira, A. Cid, and J. Abalde. 2005. Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. Bioresour. Technol. 96: 373-378 https://doi.org/10.1016/j.biortech.2004.04.006
  24. Park, E. K. and C.-G. Lee. 2001. Astaxanthin production by Haematococcus pluvialis under various light intensities and wavelengths. J. Microbiol. Biotechnol. 11: 1024-1030
  25. Shaish, A., M. Avron, U. Pick, and A. Ben-Amotz. 1993. Are active oxygen species involved in induction of ${\beta}$-carotene in Dunaliella bardawil. Planta 190: 363-368
  26. Wan, K. L., S. P. Chong, S. T. Ng, M. W. Shirley, F. M. Tomley, and M. S. Jangi. 1999. A survey of genes in Eimeria tenella merozoites by EST sequencing. Int. J. Parasitol. 29: 1885-1892 https://doi.org/10.1016/S0020-7519(99)00160-5
  27. Wang, S. B., F. Chen, M. Sommerfeld, and Q. Hu. 2004. Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta 220: 17-29 https://doi.org/10.1007/s00425-004-1323-5