Geochemistry and Sm-Nd isotope systematics of Precambrian granitic gneiss and amphibolite core at the Muju area, middle Yeongnam Massif

영남육괴 중부 무주 지역에 위치하는 선캠브리아기 화강편마암 및 앰피볼라이트 시추코아의 Sm-Nd 연대 및 지구화학적 특징

  • Lee Seung-Gu (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim Yongje (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim Kun-Han (Geological and Environmental Hazard Division, Korea Institute of Geoscience and Mineral Resources)
  • 이승구 (한국지질자원연구원 지하수지열연구부) ;
  • 김용제 (한국지질자원연구원 지하수지열연구부) ;
  • 김건한 (한국지질자원연구원 지질환경재해연구부)
  • Published : 2005.09.01

Abstract

The Samyuri area of Jeoksang-myeon, Muju-gun at the Middle Yeongnam Massif consists of granitic gneiss, porphyroblastic gneiss and leucocratic gneiss, which correspond to Precambrian Wonnam Series. Here we discuss a geochemical implication of the data based on major element composition, trace element, rare earth element (REE), Sm-Nd and Rb-Sr isotope systematics of the boring cores in the granite gneiss area. The boring cores are granitic gneiss (including biotite gneiss) and amphibolite. The major and trace element compositions of granitic gneiss and amphibolite suggest that the protolith belongs to TTG (Tonalite-Trondhjemite-Granodiorite) and tholeiitic series, respectively. Chondrte-normalized REE patterns vary in LREE, HREE and Eu anomalies. The granitic gneiss and amphibolite have Sm-Nd whole rock age of $2,026{\pm}230(2{\sigma})$ Ma with an initial Nd isotopic ratio of $0.50979{\pm}0.00028(2{\sigma})$ (initial ${\epsilon}_{Nd}=-4.4$), which suggests that the source material was derived from old crustal material. Particularly, this initial ${\epsilon}$ Nd value belongs to the range of the geochemical evolution of Archean basement in North-China Craton, and also corresponds to the initial Nd isotope evolution line by Lee et al. (2005). In addition, chondrite-normalized REE pattern and initial Nd value of amphibolite are very similar to those of juvenile magma in crustal formation process.

영남육괴의 중부의 무주군 적상면 삼유리 일대에는 선캠브리아기 원남층군에 해당되는 화강암질 편마암, 반상변정 화강암질 편마암과 우백질 편마암이 분포한다. 이 논문에서는 화강암질 편마암 지역에서 200m심도 까지 굴착한 시추코아의 주성분, 미량성분, 희토류원소 그리고 Sm-Nd, Rb-Sr 동위원소 자료의 지구화학적 의의를 토의하고자 한다. 시추코아의 암상은 심도에 따라 변하고, 주로 화강암질 편마암과 앰피볼라이트로 구성되어 있다. 주성분 및 미량성분의 화학조성 자료를 토대로 한 연구지역내 화강암질 편마암 및 앰피볼라이트의 기원물질은 각각 TTG(Tonalite-Trondhjemite-Granodiorite) 계열 및 솔레아이트 계열의 암석에 속한다. 희토류원소의 분포도를 보면 경희토류(La-Sm)와 중희토류(Gd-Lu)의 변화 및 Eu의 부(-)의 이상이 매우 다양하다. Sm-Nd 동위원소자료에 따른 등시선에 의하면 $2,026{\pm}230(2{\sigma})$ Ma의 연대를 보여주며, 이때의 Nd 초기치는 $0.50979{\pm}0.00028(2{\sigma})$이다. 그리고 ${\epsilon}_{Nd}$(2.0 Ga)값은 -4.4로 연구지역 변성암류의 기원물질이 고기의 지각물질임을 지시해준다. 이 값은 북중국지괴 시생대 기반암의 진화영역에 속하며, 특히 Lee et al.(2005)이 제안한 영남육괴내 Nd 동위원소 초기치의 진화와 일치하는 상관성을 갖는다. 그리고 앰피볼라이트의 희토류원소 분포도와 Nd 초기치는 앰피볼라이트의 기원물질이 결핍된 맨틀과 지각을 형성하기 시작한 초기마그마와 매우 유사함을 지시해준다.

Keywords

References

  1. 이광식, 정창식, 박계헌, 장호완, 1997, 무주지역 각섬암의 지구화학 및 Sm-Nd 동위원소 연구. 자원환경지질, 30, 313-320
  2. 이대성, 남기상, 1969, 지질도폭설명서(1:50,000 장기리). 국립 지질광물연구소, 33p
  3. 김건한, 음철헌, 2004, 유도결합 플라즈마 질량분광법에 (ICP-MS)에 의한 암석표준물질 중의 Lanthanids, Y, Th, U 분석. 한국지질자원연구원 논문집, 8, 43-53
  4. 박계헌, 정창식, 이광식, 장호완, 1993, 태백산지역의 고기 화강암 및 화강편마암류에 대한 납 동위원소 연구. 지질 학회지, 29, 387-395
  5. Bau, M., 1996, Controls on the fractionation of isovalent tarce elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contr. Mineral. Petrol., 123, 323-333 https://doi.org/10.1007/s004100050159
  6. Bau, M., 1997, The lanthanide tetrad effect in high evolved felsic igneous rocks- A reply to the comment by Y. Pan. Contrib. Mineral. Petrol., 128, 409-412 https://doi.org/10.1007/s004100050318
  7. Bau, M., 1999, Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta, 63, 67-77 https://doi.org/10.1016/S0016-7037(99)00014-9
  8. Cheong, C-S., Kwon, S.-T. and Park, K-H., 2000, Pb and Nd isotopic constraints on Paeoproterozoic crustal evolution of the northeastern Yeongnam massif, South Korea. Precam. Res., 102, 207-220 https://doi.org/10.1016/S0301-9268(00)00066-8
  9. Chen, J. F. and Jahn, B. M., 1998, Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284, 101-133 https://doi.org/10.1016/S0040-1951(97)00186-8
  10. Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean Peninsula: a review and new view. Earth-Sci. Rev., 52, 175-235 https://doi.org/10.1016/S0012-8252(00)00029-5
  11. DePaolo, D. J., 1988, Neodymium isotope geochemistry. Springer-Verlag, 187p
  12. Heier, K. S., 1973, Geochemistry of granulite facies rocks and problems of their origin. Philos. Trans. R. Soc. Lon., A273, 429-442
  13. Hong, Y. K., Lee, S. G. and Lan, C. Y., 1996, Comparison between the Hongjesa granite and the Buncheon granite gneiss based on Sm-Nd age. Abstract of Annual Meeting of the Geological Society of Korea, 100
  14. Irber, W., 1999, The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites, Geochim. Cosmochim, Acta, 63, 489-508 https://doi.org/10.1016/S0016-7037(99)00027-7
  15. Jahn, B-m. and Zhang, Z. Q., 1984, Radiometric Ages (Rb- Sr, Sm-Nd, U-Pb) and REE geochemistry of Archean granulite gneisses from eastern Hebei Province, China. In Archrean Geochemistry (ed. A. Kroner, G.N. Hanson and A.M. Goodwin). Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 204-234
  16. Jahn, B-m., Zhou, X. H. and Li, J. L., 1990, Formation and tectonic evolution of southern China and Taiwan: isotopic and geochemical constraints. Tectnophyscis, 183, 145- 160 https://doi.org/10.1016/0040-1951(90)90413-3
  17. Jahn, B.-m., Wu, F., Capdevila, R., Martineau, F., Zhao, Z. and Wang, Y., 2001, Highly evolved juvenile granites with tetrad REE patterns: the Wuduhe and Baderzhe granites from the Great Xing'an Mountains in NE China. Lithos, 59, 171-198 https://doi.org/10.1016/S0024-4937(01)00066-4
  18. Keto, L. S. and Jacobsen, S. B., 1987, Nd and Sr isotopic variations of early Paleozoic oceans. Earth Planet. Sci. Lett., 84, 27-41 https://doi.org/10.1016/0012-821X(87)90173-7
  19. Kim, J. and Cho, M., 2003, Low-pressure metamorphism and leucogranite magmatism, northeastern Yeongnam Massif, Korea: implication for Paleoproterozoic crustal evolution. Precam. Res., 122, 235-251 https://doi.org/10.1016/S0301-9268(02)00213-9
  20. Lee, S. G., Masuda, A. and Kim, H. S., 1994, An early Proterozoic leuco-granitic gneiss with the REE tetrad phenomenon. Chem. Geol., 114, 59-67 https://doi.org/10.1016/0009-2541(94)90041-8
  21. Lee, S. G., Masuda, A., Shimizu, H. and Song, Y. S., 2001, Crustal evolution history of Korean Peninsula in East Asia: The significance of Nd, Ce isotopic and REE data from the Korean Precambrian gneiss. Geochem. J., 35, 175-187 https://doi.org/10.2343/geochemj.35.175
  22. Lee, S. G., Lee, D. H., Kim, Y., Chae, B. G., Kim, W. Y. and Woo, N. C., 2003, Rare earth elements as an indicator of groundwater environment changes in a fractured rock system: Evidence from fracture-filling calcite. Appl. Geochem., 18, 135-143 https://doi.org/10.1016/S0883-2927(02)00071-9
  23. Lee, S. G., Kim, Y., Chae, B. G., Koh, D. C. and Kim, K. H., 2004, The geochemical implication of a variable Eu anomaly in a fractured gneiss core: application for understanding Am behavior in the geological environment. Appl. Geochem., 19, 1711-1725 https://doi.org/10.1016/j.apgeochem.2004.03.008
  24. Lee, S. G., Shin, S. C., Jin, M. S., Ogasawara, M. and Yang, M. K., 2005, Two Paleoproterozoic strongly peraluminous granitic plutons (Nonggeori and Naedeokri granites) at the northeastern part of Yeongnam Massif, Korea: Geochemical and isotopic constraints in East Asian crustal formation history. Precam. Res., 139, 101- 120 https://doi.org/10.1016/j.precamres.2005.06.006
  25. Lee, S. R., Cho, M., Hwang, J. H., Lee, B-J., Lim, Y-B. and Kim, J. C., 2003, Crustal evolution of the Gyeonggi massif, South Korea: Nd isotopic evidence and implications for continental growths of East Asia. Precam. Res., 121, 25-34 https://doi.org/10.1016/S0301-9268(02)00196-1
  26. Liu, S., Pan, Y., Xie, Q., Zhang, J., Li, Q. and Yang. B., 2005, Geochemistry of the Paleoproterozoic Nanging granitic gneissees in the Fuping Complex: implications for the tectonic evolution of the Central Zone, North China Craton. J. Asia. Earth Sci., 24, 643-658 https://doi.org/10.1016/j.jseaes.2003.10.010
  27. Ludwig, K. R., 1999, Isoplot/Ex(v.2.06)-A geochronological tool kit for Microsoft Excel, Berkley Geochronology Center, Special Publications No. 1a, 49p
  28. Masuda, A., 1975, Abundances of mono isotopic REE, consistentconsistent with the Leedey chondritic values. Geochem. J., 9, 183-184 https://doi.org/10.2343/geochemj.9.183
  29. Masuda, A., Nakamura, N. and Tanaka, T., 1973, Fine structure of mutually normalized rare earth patterns of chondrites. Geochim. Cosmochim. Acta, 37, 239-248 https://doi.org/10.1016/0016-7037(73)90131-2
  30. Masuda, A., Kawakami, O., Dohmoto, Y. and Takenaka, T., 1987, Lanthanide tetrad effects in nature: two mutually opposite types, W and M. Geochem. J., 21, 119-124 https://doi.org/10.2343/geochemj.21.119
  31. O'Connor, J. T., 1965, A classification for quartz-rich igneous rocks based on feldspar ratio. U. S. Geol. Surv. Prof. Paper, 525B, 79-84
  32. Pearce, J. A., Harris, N. B. W. and Tindle, A. G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic Rocks. J. Petrol., 25, 956-983 https://doi.org/10.1093/petrology/25.4.956
  33. Shimizu, H., Lee, S. G., Masuda, A. and Adachi, M., 1996, Geochemistry of Nd, and Ce isotopes and REE abundances inn Precambrian orthogneiss clasts from the Kamiaso conglomerate, central Japan. Geochem. J., 30, 57-69 https://doi.org/10.2343/geochemj.30.57
  34. Wu, F.-Y., Jahn, B-m., Wilde, S. and Sun, D., 2000, Phanerozoic crustal growth: U-Pb and Sm-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328, 89-113 https://doi.org/10.1016/S0040-1951(00)00179-7
  35. Wu, F.-Y., Sun, D., Li, H., Jahn, B-m. and Wilde, S., 2002, A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem. Geol., 187, 143-173 https://doi.org/10.1016/S0009-2541(02)00018-9
  36. Wu, F.-Y., Zhao, G., Wilde, S. A. and Sun, D., 2005, Nd isotopic constraints on crustal formation in the North China Craton. J. Asia. Earth Sci., 24, 523-545 https://doi.org/10.1016/j.jseaes.2003.10.011