DOI QR코드

DOI QR Code

Effects of Radish Leaves Powder on Hepatic Antioxidative System in Rats Fed High-Cholesterol Diet

무청이 고콜레스테롤 식이 흰쥐 간조직의 항산화계에 미치는 영향

  • Rhee, Soon-Jae (Dept. of Food Science and Nutrition, Catholic University of Daegu) ;
  • Ahn, Jung-Mo (Dept. of Food Science and Nutrition, Catholic University of Daegu) ;
  • Ku, Kyung-Hyung (Korea Food Research Institute) ;
  • Choi, Jeong-Hwa (School of Food Science, JinJu International University)
  • 이순재 (대구가톨릭대학교 식품영양학과) ;
  • 안정모 (대구가톨릭대학교 식품영양학과) ;
  • 구경형 (한국식품연구원) ;
  • 최정화 (진주국제대학교 식품과학부)
  • Published : 2005.10.01

Abstract

The current study examined the effects of radish loaves powder on hepatic antioxidative system in rats fed high-cholesterol diet. Sprague-Dawley male rats weighing 100$\pm$10 g were randomly assigned to normal group (N group), normal diet with 5$\%$ radish leaves powder supplemented group (NR group) and high-cholesterol groups, which were sub-divided into radish leaves powder free diet group (HC group) and 2.5$\%$ (HRL group), 5$\%$ (HRM group), 10$\%$ (HRH group) radish leaves powder supplemented groups. Hepatic super oxide dimutase activity was no significant differences. Hepatic glutathione peroxidase activity was sig-nificantly increased in 5$\%$, 10$\%$ radish leaves powder supplemented groups. Hepatic hydrogen peroxide contents in cytosol were no significantly differences Hepatic hydrogen peroxide contents in mitochondria were sig-nificantly reduced in radish leaves powder supplemented groups. Hepatic superoxide radical contents in mi-crosome were significantly reduced in radish leaves powder supplemented groups. Hepatic superoxide radical contents in mitochondria were significantly reduced in 5$\%$, 10$\%$ radish leaves powder supplemented groups. Hepatic TBARS values were significantly reduced in 5$\%$, 10$\%$ radish leaves powder supplemented groups. Hepatic lipofuscin contents were no significant difference in high-cholesterol groups. Hepatic carbonyl values were significantly reduced in 5$\%$, 10$\%$ radish leaves powder supplemented groups among high-cholesterol groups. The results indicate that radish leaves may reduce oxidative damage by activating antioxidative de-fense system of liver in rats fed high-cholesterol diets.

본 연구에서는 무청의 생체 내 항산화작용을 규명하기 위하여 고콜레스테롤 식이 흰쥐 간조직의 항산화 방어계와 지질과산화에 미치는 영향을 관찰하였다. 실험동물은 체중 100g내외의 Sprague Dawley 종 수컷 흰쥐를 이용하였으며, 정상군과 고콜레스테롤 식이 실험군으로 나눈 후 정상군은 다시 무청파우더를 공급하지 않은 군(N group), 무청파우더를 공급한 군(NR group)으로 나누고 고콜레스테롤 식이 실험군은 무청파우더를 공급하지 않은 군(HC group)과 무청파우더를 각각 $2.5\%$(HRL group), $5\%$(HRM group), $10\%$(HRH group)씩 공급한 군으로 나누었다. 식이와 식수는 자유섭식시켰으며, 4주간 사육한 후 희생시켰다. 실험기간 동안의 체중증가량은 정상군에 비해 고콜레스테롤 식이군에서 유의적으로 증가하였으며, 무청파우더 공급군은 정상군 수준이었고, 식이효율 역시 유사한 경향이었다. 간조직 중의 항산화 효소 관찰에서 SOD는 실험군간의 유의적인 차이는 없었으나 무청파우더군에서 HC군에 비해 다소 증가한 경향이었다. GSH-px는 정상군에 비해 콜레스테롤 공급군 모두에서 감소되었으나 무청파우더를 5$\%$와 10$\% $ 공급한 군에서는 HC군에 비해 유의적으로 증가되었다. 조직의 과산화적 손상의 지표가 되는 간조직의 TBARS함량을 관찰한 결과 정상군에 비해 고콜레스테롤 식이군에서 유의적으로 증가 하였고 HC군에 비해 무청파우더 5$ \% $ 공급한 HRM군과 10$ \% $로 공급한 HRH군 두 군에서 유의적으로 감소되었다. 간조직의 cytosol에서 $H_{2} $$O_{2}$의 함량을 측정한 결과 정상군과 고콜레스테롤 군간의 유의적인 차이는 없었다. 간조직의 mito-chondria에서 $ H_{2}$$O_{2}$의 함량을 측정한 결과 정상군에 비해 고콜레스테롤군이 유의적으로 증가되었으나 무청파우더 5$\%$ 공급한 HRM군과 10$\%$ 공급한 HRH군은 정상군 수준이었다. 간조직의 microsome에서 $O_{2}$$\cdot$ 함량을 측정한 결과 정상군에 비해 HC군에서 유의적으로 증가되었으나 무청파우더를 공급한 모든 군에서 유의적으로 감소되었다. 특히 무청파우더 10$\%$ 공급한 HRH군에서는 정상군 수준으로 감소되 었다. 간조직의 mitochondria에서 $O_{2}$$\cdot$ 함량을 측정한 결과 무청파우더를 5$\%$, 10$\%$ 공급한 HRM, HRH군에서 정상군 수준으로 감소되었다. 이상과 같이 고콜레스테롤 식이 흰쥐에서 무청파우더 공급 수준에 따라 간조직의 항산화 방어 효소의 활성을 증가시켜 산화적 손상을 완화시키는 작용이 관찰되었다.

Keywords

References

  1. Shepherd J, Packard CJ, Grundy SM, Yeshumin P, Gotto AM, Taunton OD. 1980. Effect of saturated and polyunsaturated fat diet in the chemical composition and metabolism of low density lipoprotein in man. J Lipid Res 21: 91-99
  2. Sacks FM. 2002. The role of high-density lipoprotein (HDL) cholesterol in the prevention and treatment of coronary heart disease: expert group recommendations. Am J Cardiol 90: 139-143 https://doi.org/10.1016/S0002-9149(02)02436-0
  3. Hegsted DM, McGandy RB, Myers ML, Stare FJ. 1965. Quantitative effects of dietary fat on serum cholesterol in man. Am J Clin Nutr 17: 281-286 https://doi.org/10.1093/ajcn/17.5.281
  4. Mantha SV, Kalra J. Prasad K. 1996. Effects of probucol on hyper cholesterolemia-induced changes in antioxidant enzymes. Life Sci 58: 503-509 https://doi.org/10.1016/0024-3205(95)02315-1
  5. Del Boccio G, Lapenna D, Porreca E, Pennelli A, Savini F, Feliciani P, Ricci G, Cuccurullo F. 1990. Aortic antioxidant defence mechanism: time-related changes in cholesterol fed rabbits. Atherosclerosis 81: 127-135 https://doi.org/10.1016/0021-9150(90)90019-F
  6. Balkan J, Kanbagli O, Hatipoglu A, Kucuk M, Cevikbas U, Aykac-Toker G, Uysal M. 2002. Improving effect of dietary taurine supplementation on the oxidative stress and lipid levels in the plasma, liver and aorta of rabbits fed on a high -cholesterol diet. Biosci Biotechnol Biochem 66: 1755-1758 https://doi.org/10.1271/bbb.66.1755
  7. Naito M, Wu X, Nomura H, Kodama M, Kato Y, Osawa T. 2002. The protective effects of tetrahydrocurcumin on oxidative stress in cholesterol-fed rabbits. J Atheroscler Thromb 9: 243-250 https://doi.org/10.5551/jat.9.243
  8. Yokozawa T, Nakagawa T, Kitani K. 2002. Antioxidative activity of green tea polyphcnol in cholesterol-fed rats. J Agric Food Chem 50: 3549-3552 https://doi.org/10.1021/jf020029h
  9. Jeon SM, Bok SH, Jang MK, Lee MK, Nam KT, Park YB, Rhee SJ, Choi MS. 2001. Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci 69: 2855-2866 https://doi.org/10.1016/S0024-3205(01)01363-7
  10. Bok SH, Park SY, Park YB, Lee MK, Jeon SM, Jeong TS, Choi MS. 2002. Quercetin dihydrate and gallate supplements lower plasma and hepatic lipids and change activities of hepatic antioxidant enzymes in high cholesterol-fed rats. Int J Vitam Nutr Res 72: 161-169 https://doi.org/10.1024/0300-9831.72.3.161
  11. Mortensen A, Skibsted LH, Sampson J, Rice-Evans C, Everett SA. 1997. Comparative mechanism and rates of free radical scavenging by carotenoid antioxidants. FEBS Letters 418: 91-97 https://doi.org/10.1016/S0014-5793(97)01355-0
  12. Yamaguchi F, Yoshimura Y, Nakazawa H, Ariga T. 1999. Free radical scavenging activity of grape seed extract and antioxidants by electron spin resonance spectrometry in an $H_2O_2/NaOH/DMSO$ system. J Agric Food Chem 47: 2544-2548 https://doi.org/10.1021/jf9806762
  13. Yu BP. 1996. Aging and antioxidative stress: Modulation by dietary restriction. Free Rad Biol Med 21: 651-668 https://doi.org/10.1016/0891-5849(96)00162-1
  14. Anatol K, Ulrike M, Sonke A, Amaar U, Charlotte L, Tomas MT, Ulrike B. 2001. Influence of vitamin E and C supplementation on lipoprotein oxidation in patients with Alzheimer's disease. Free Rad Biol Med 31: 345-354 https://doi.org/10.1016/S0891-5849(01)00595-0
  15. Graham S, Dayal H, Swanson M, Mittelman A, Wilkinson G. 1978. Diet in the epidemiology of cancer of colon and rectum. J Natl Cancer Inst 61: 709-714
  16. Graham S. 1983. Towad a dietary prevention of cancer. Epidorniol Rev 5: 38-50 https://doi.org/10.1093/oxfordjournals.epirev.a036263
  17. Coditz GA, Branch LG, Lipnick RJ, Willett WC, Rosner B, Posner BM, Hennekens CH. 1985. Increase green and yellow vegetable intake and lowered cancer deaths in an eldery ppulation. Am J Clin Nur 41: 32-36 https://doi.org/10.1093/ajcn/41.1.32
  18. Boyd JN, Babish JG, Stoewsand GS. 1982. Modification by beet and cabbage diets of aflatoxin $B_1$ -induced rat plasma $\alpha$ -foetoprotein elevation, hepatic tumorigenesis and mutagenicity of urine. Food Chem Toxicol 20: 47-52 https://doi.org/10.1016/S0278-6915(82)80008-2
  19. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the antioxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biol Chem 47: 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  20. Lawrence RA, Burk RF. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophy Res Commun 71: 952-958 https://doi.org/10.1016/0006-291X(76)90747-6
  21. Gay C, Gebicki JM. 2000. A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Anal Biochem 284: 217-220 https://doi.org/10.1006/abio.2000.4696
  22. Azzi A, Montecucco C, Richter C. 1975. The use of acetylated ferricytochrome c for the detection of superoxide radicals produced in biological membrane. Biochem Biopliy Res Commun 65: 597-603 https://doi.org/10.1016/S0006-291X(75)80188-4
  23. Satho K. 1978. Serum lipid peroxide in cerebrovascular disorders determined by a new metric method. Clinica Chemica Acta 90: 37-43 https://doi.org/10.1016/0009-8981(78)90081-5
  24. Fletcher BL, Dillard CJ, Tappel AL. 1973. Measurement of fluorescent lipid peroxidation products in biological systems and tissues. Anal Biochem 52: 1-9 https://doi.org/10.1016/0003-2697(73)90327-8
  25. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods Eneyrnol 186: 464-478 https://doi.org/10.1016/0076-6879(90)86141-H
  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ, 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275
  27. Sreel RGD, Torrie JH. 1990. Principles and procedures of statistics. McGrow Hill, New York, USA
  28. Yoon EY, Wang SG. 1996. Effects of indigestible dextrin and pectin on lipid metabolism. J Lipid Res 6: 147-152
  29. Tang CF, Liu YG, Zeng GM, Li CF, Xu WH. 2004. Effects of cadmium stress on active oxygen generation, lipid peroxidation and antioxidant enzyme activities in radish seedlings. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 30: 469-474
  30. Angela PV, Peter JL, Ricardo AA. 2001. Antioxidant enzymes reponses to cadmium in radish tissues. Phytochemistry 57: 701-710 https://doi.org/10.1016/S0031-9422(01)00130-3
  31. Oh SJ, Kim WK, Kim YH, Kim HY, Choi EH, Kim SH. 1999. Effect of fructooligosaccharide on lipid metabolism in hypercholesterolemic rat. Korean J Nutr 32: 129-136
  32. Song Y, Yang Z. 2003. Preparation of fiber complexes and its role in lipid peroxidation. Wei Sheng Yan Jiu 32: 451-454
  33. Bus JS, Aust SD, Gibson JE. 1975. Lipid peroxidation. a possible mechanism for paraquat toxicity. Res Commun Chem Pathol Pharmacal 11: 31-38
  34. Harman D, Armstrong D, Sohal RS, Cutler RG, Slater TF. 1984. Free radicals and the origination evolution and present status of the free radical theory of aging. In Free radicals in molecular biology, aging and disease. Raven Press, New York. p 27
  35. Halliwell B, Gutteridge JM. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1-14 https://doi.org/10.1042/bj2190001
  36. Mantha SV, Kalra J, Prasad K. 1996. Effects of probucol on hypercholesterolemia-induced changes in antioxidant enzymes. Life Sci 58: 503-509 https://doi.org/10.1016/0024-3205(95)02315-1
  37. Jung MS, Lee GS, Chae HJ. 2004. In vitro biological activity assay of ethanol extract of radish. J Korean Soc Appl Biol Chem 47: 67-71
  38. Fridovich I. 1986. Bioligical effects of the superoxide radical. Arch Biochem Biophys 247: 1-15 https://doi.org/10.1016/0003-9861(86)90526-6
  39. Muquel J. 1989. Historical introduction to free radical and antioxidant biomedical reseach. In CRC handbook of free radical and antioxidants in biomedicine. CRC Press, Floride. Vol 1, p 3-16

Cited by

  1. Effects of Water Extracts of Red Pepper Seeds Powder on Antioxidative Enzyme Activities and Oxidative Damage in Rats Fed High-Fat and High-Cholesterol Diets vol.44, pp.4, 2011, https://doi.org/10.4163/kjn.2011.44.4.284
  2. Effect of Radish Leaves Powder on the Gastrointestinal Function and Fecal Triglyceride, and Sterol Excretion in Rats Fed a Hypercholesterolemic Diet vol.37, pp.10, 2008, https://doi.org/10.3746/jkfn.2008.37.10.1258
  3. Effects of Portulaca oleracea Powder on the Lipid Levels of Rats Fed a Hypercholesterolemia Inducing Diet vol.16, pp.3, 2011, https://doi.org/10.3746/jfn.2011.16.3.202
  4. Increase in Anti-Oxidant Components and Reduction of Off-Flavors on Radish Leaf Extracts by Extrusion Process vol.45, pp.12, 2016, https://doi.org/10.3746/jkfn.2016.45.12.1769
  5. Quality Characteristics of Sponge Cakes with Radish Leaf Powder     vol.25, pp.3, 2015, https://doi.org/10.17495/easdl.2015.6.25.3.502
  6. Quality Characteristics of Soy Sauce Braised Shiraegi with Baknig Powder vol.31, pp.5, 2015, https://doi.org/10.9724/kfcs.2015.31.5.676
  7. Effects of Salvia plebeia R. Br. on Antioxidative Enzyme Activities and Oxidative Damage in Rats Fed High-Fat and High-Cholesterol Diets vol.33, pp.4, 2018, https://doi.org/10.13103/JFHS.2018.33.4.316
  8. digestion pp.2042-650X, 2019, https://doi.org/10.1039/C8FO02003E
  9. 고추씨가 고지방.고콜레스테롤 식이 흰쥐의 항산화계 및 산화적 손상에 미치는 영향 vol.38, pp.9, 2005, https://doi.org/10.3746/jkfn.2009.38.9.1161
  10. 무청 분말이 첨가된 설기떡의 품질 특성 vol.31, pp.3, 2005, https://doi.org/10.9724/kfcs.2015.31.3.318
  11. Polysaccharide fraction from greens of Raphanus sativus alleviates high fat diet-induced obesity vol.343, pp.None, 2005, https://doi.org/10.1016/j.foodchem.2020.128395
  12. Physiological Activity and Development of a Beverage from Radish Leaves vol.31, pp.4, 2005, https://doi.org/10.17495/easdl.2021.8.31.4.250