Effects of pH-Eh on Natural Attenuation of Soil Contaminated by Arsenic in the Dalchen Mine Area, Ulsan, Korea

비소로 오염된 달천광산 토양의 자연저감 능력에 대한 pH-Eh영향

  • Park Maeng-Eon (Department of Environmental Geosciences, Pukyong National University) ;
  • Sung Kyu-Youl (Department of Environmental Geosciences, Pukyong National University) ;
  • Lee Minhee (Department of Environmental Geosciences, Pukyong National University) ;
  • Lee Pyeong-Koo (Department of Geological and Environmental Hazards, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim Min-Chul (Korea Agricultural & Rural Infrastructure Corporation)
  • 박맹언 (부경대학교 환경지질과학과) ;
  • 성규열 (부경대학교 환경지질과학과) ;
  • 이민희 (부경대학교 환경지질과학과) ;
  • 이평구 (한국지질자원연구원 지질환경재해연구부) ;
  • 김민철 (농업기반공사)
  • Published : 2005.12.01

Abstract

The contamination of soils and groundwaters in the Dalcheon mine area, Ulsan, is investigated, and a natural attenuation capacity on redox and pH is evaluated. Arsenopyrite, the major source of arsenic pollution in the Dalcheon mine area, is contained up to $2\%$ in tailings. Furthermore, As-bearing minerals such as loellingite, nicolite, rammelsbergite, gersdorffite cobaltite and pyrite are also source of arsenic contamination, which show various concentration of arsenic each other. Surface of pyrite and arsenopyrite in tailings partly oxidized into Fe-arsenates and Fe-oxides, which means a progressive weathering process. There is no relationship between pH and arsenic content in groundwaters, otherwise Eh and arsenic concentration in unsaturated and saturated groundwater shows positive relationship. RMB (Red Mud Bauxite) could be useful as a trigger on natural attenuation due to superior ability of removal capacity of arsenic when contaminated soil and groundwater in the Dalcheon mine area are remediated.

울산 달천광산의 지하수 및 토양 중에 함유되어 있는 비소의 오염현황을 파악하고, pH와 산화-환원 전위 값의 변화에 따른 자연저감 능력을 평가하였다. 달천광산 지역 비소 오염의 주 근원광물인 유비철석의 광미 내 함량은 최대 $2\%$이며, 비독사석, 니콜라이트, 램멜스버가이트, 거스도르파이트, 코발트석과 황철석 등의 비소함유광물 역시 비소오염의 근원이 되고 있으며, 비소함량은 광물에 따라 다양한 차이를 보인다 광미장 내 유비철석과 황철석의 표면이 부분적으로 철산화물과 철비산염으로 산화된 것을 관찰할 수 있어, 풍화반응이 상당히 진행되었음을 알 수 있다. 지하수 내 비소의 함량과 pH는 뚜렷한 상관관계를 보이지 않지만, 포화대 및 비포화대의 지하수의 비소 농도는 Eh가 감소함에 따라 농도가 감소하는 정(+)의 상관관계를 보인다. RMB(Red Mud Bauxite)는 비소제거 효율이 우수하여 달천광산 지역의 비소로 오염된 지하수 및 토양을 복원 시 자연저감 촉진제로 이용될 수 있을 것이다.

Keywords

References

  1. 김규한, 박재경, 양종만, Naohhiro, Y. (1990) 울산철광산의 탄산염암과 사문암의 성인. 지질학회지, 26권, p. 407-417
  2. 김규한, 박재경, 양종만, Satake, H. (1993) 울산철광산지역의 사문암의 사문석화 작용에 관한 연구. 광산지질, v. 26, no. 3, p. 267-278
  3. 농업기반공사 (2004) 울산광역시 달천광산부지 토양오염정밀조사 결과 보고서. 현대산업개발(주), 460p
  4. 박기화, 박희인 (1980) 울산 철 . 중석 광상의 성인. 광산지질, 13권, p. 104-116
  5. 안주성, 김주용, 전철민, 문희수 (2003) 풍화광미내 고상비소의 광물학적.화학적 특성 및 용출 가능성 평가. 자원환경지질, 36권, p. 27-38
  6. 윤욱, 조병욱, 성규열 (2004) 울산지역 지하수중 비소의 산출 및 존재형태. 자원환경지질, 37권, p. 657-667
  7. Acharyya, S.K., Lahiri, S., Raymahashay, B.C. and Bhow-mik, A. (2000) Arsenic toxicity of groundwater in parts of the Bengal Basin in India and Bangladesh: the role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environmental Geology, v. 39, p. 1127-1137 https://doi.org/10.1007/s002540000107
  8. Bhattacharya, P., Chatterjee, D. and Jacks, G. (1997) Occurence of arsenic-contaminated groundwater in alluvial aquifers from the Delta Plain, Eastern India: options for a safe drinking water supply. Water Res. Dev., v. 13, p. 79-92 https://doi.org/10.1080/07900629749944
  9. Choi, S.G. and Imai, N. (1983) Miharaite in bornite-rich copper ore from the Ulsan mine, Republic of Korea. J. Japan. Assoc. Min. Petr. Econ. Geol., v. 78, p. 350-360 https://doi.org/10.2465/ganko1941.78.350
  10. Dove, P.M. and Rimstidt, J.D. (1985) The solubility and stability of scorodite, $FeAsO_4.2H_2O$. Am. Miner., v. 70, p. 838-844
  11. Ko, I., Ahn, J.S., Park, Y.S. and Kim, K.W. (2003) Arsenic contamination of soils and sediments from tailings in the vicinity of Myungbong mine, Korea. Chemical Speciation and Bioavailability, v. 15, p. 67-74 https://doi.org/10.3184/095422903782775217
  12. Kruse, E. and Ettel, VA. (1998) Solubility and stability of scorodite, $FeAsO_4.2H_2O$: new data and further discussion. Am. Miner., v. 73, p. 850-854
  13. Lombi, E., Zhao, F.J., Zhang, G., Sun, B., Fitz, W, Zhang, H. and McGrath, S.P. (2002) In situ fixation of metals in soils using bauxite residue: chemical assessment. Environmental Pollution, v. 118, p. 435-443 https://doi.org/10.1016/S0269-7491(01)00294-9
  14. Mallick, S. and Rajagopal, N.R. (1996) Groundwater development in the arsenic-affected alluvial belt of West Bengal-Some Questions. Current Science, v. 70, p. 956-958
  15. Masscheleyn, EH., Delaune, R.D. and Patrick, WH.Jr. (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol., v. 25, p. 1414-1419 https://doi.org/10.1021/es00020a008
  16. Nesibitt, H.W., Muir, I.J. and Pratt, A.R. (1995) Oxidation of arsenopyrite by air and air-saturated, distilled water and implications for mechanism of oxidation. Geochem. Cosmochim. Acta, v. 59, p. 1773-1786 https://doi.org/10.1016/0016-7037(95)00081-A
  17. Nickson, R.T., McArthur, J.M., Burgess, W.G., Ahmed, K.M., Ravenscroft, E and Rahaman, M. (1998) Arsenic poisoning of Bangladesh groundwater. Nature, v. 395, p. 338 https://doi.org/10.1038/26387
  18. Nickson, R.T., McArthur, J.M., Ravenscroft, E, Burgess, W.G. and Asgmed, K.M. (2000) Mechanism of arsenic poisoning of groundwater in Bangladesh and West Bengal. Appl. Geochem., v. 15, p. 403-413 https://doi.org/10.1016/S0883-2927(99)00086-4
  19. Papassiopi, N., Vircikova, E., Nenov, V, Kontopoulos, A. and Molnar, L. (1996) Removal and fixation of arsenic in the form of ferric arsenates: three parallel experimental studies. Hydrometallurgy, v. 41, p. 243-253 https://doi.org/10.1016/0304-386X(95)00059-P
  20. Pokrovski, G.S., Kara, S. and Roux, J. (2002) Stability and solubility of arsenopyrite, FeAsS, in crustal fluids. Geochim. Cosmochim. Acta, v. 66, p. 2361-2378 https://doi.org/10.1016/S0016-7037(02)00836-0
  21. Reed, M.H. (1982) Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochim. Cosmochim. Acta, v. 46, p. 513-528 https://doi.org/10.1016/0016-7037(82)90155-7
  22. Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem., v. 17, p. 517-568 https://doi.org/10.1016/S0883-2927(02)00018-5