The Hepatotprotective and Antioxidative Effects of Onion (Allium cepa) Extracts in Rat Hepatocyte Primary Culture

양파(Allium cepa) 추출물의 간보호 및 항산화 효과

  • Lim Sang-Cheol (Division of Environment and Biosystem, College of Life Science and Natural Resources, Sangji University) ;
  • Rhim Tae-Jin (Division of Environment and Biosystem, College of Life Science and Natural Resources, Sangji University)
  • 임상철 (상지대학교 생명자원과학대학 환경바이오시스템학부) ;
  • 임태진 (상지대학교 생명자원과학대학 환경바이오시스템학부)
  • Published : 2005.10.01

Abstract

The objective of present study was to investigate the hepatoprotective and antioxidative effects of onion extracts. Primary cultures of rat hepatocytes were incubated with 1.5 mM tort-butyl hydroperoxide(t-BHP), potent oxidizing agent to liver, for 1 hr in the presence or absence of various concentrations (0, 0.01, 0.05, 0.1 or 0.3 mg/ml) of onion extract. Incubation with t-BHP increased glutamic oxaloacetic transaminase(GOT) and lactate dehydrogenase(LDH) acitivities and thiobarbituric acid reactive substances(TBARS) concentration but decreased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) reduction. Onion extracts at the concentration of 0.05 mg/ml decreased t-BHP-induced GOT and LDH activities. Onion extract at the concentration of 0.1 mg/ml increased t-BHP-induced MTT reduction. Onion extract at the concentration of 0.01 mg/ml decreased t-BHP-induced TBARS concentration. Taken together, onion extracts prevented t-BHP-induced hepatocyte injury and lipid peroxidation. Catalase, glutathione peroxidase(GSH-Px) and glutathione reductase(GSH-Rd) activities of hepatocytes were significantly decreased by t-BHP. Onion extracts at the concentration of 0.1 mg/ml prevented t-BHP-induced decrease in catalase, GSH-Px and GSH-Rd activities. Onion extracts prevented hydroxyl radical-induced single-strand breakage in dose-dependent manner when plasmid DNA was incubated with various concentrations of onion extracts in the presence of Fenton reagents producing hydroxyl radical. These results demonstrate that onion extracts suppressed t-BHP-induced cytoctoxicity, decreased viability and lipid peroxidation and increased GSH-Px, GSH-Rd and catalase activities. Thus hepatoprotective and antioxidant effects of onion extract seem to be due to, at least in part, the increase in antioxidant enzyme activities as well as prevention from hydroxyl radical-induced oxidation, followed by inhibition of lipid peroxidation.

본 연구의 목적은 양파추출물의 간보호 및 항산화 효과를 조사하기 위함이다. 간 손상을 유발시키는 t-BHP (1.5 mM) 존재하에 간세포를 0, 0.01, 0.05, 0.1 및 0.3 mg/ml의 다양한 농도의 양파추출물로 1시간 동안 일차배양하였다. t-BHP는 GOT와 LDH 활성 및 TBARS 농도를 증가시켰으며 MTT값은 감소시켰다. 0.05 mg/ml 농도의 양파추출물 첨가는 t-BHP에 의해 증가된 GOT 및 LDH 활성을 감소시켰으며 0.1 mg/ml 농도의 양파추출물은 t-BHP에 의해 감소된 MTT 값을 증가시켰다. 또한 0.01 mg/ml 농도의 양파추출물 첨가는 t-BHP에 의해 증가된 TBARS 농도를 감소시켜 양파추출물이 t-BHP에 의해 유발된 간손상과 지질과산화를 억제시켰다. t-BHP 처리는 간세포의 catalase, GSH-Px 및 GSH-Rd 활성을 현저히 감소시켰다. 그러나 0.1 mg/ml 농도의 양파추출물 첨가는 t-BHP에 의해 감소된 catalase GSH-Px 및 GSH-Rd 활성을 증가시켰으며 특히 catalase 활성은 t-BHP 무첨가군 수준까지 증가시켰다. 또한 hydroxyl radical을 생성하는 Fenton 시약의 존재하에 plasmid DNA를 양파추출물과 함께 배양한 결과 양파추출물은 농도 의존적으로 hydroxyl radical에 의해 유도된 single-strand 절단을 억제하였다. 이상과 같이 간세포 일차배양에서 양파추출물은 t-BHP에 의해 유발된 간독성, 간세포 생존율 감소, 지질과산화를 농도 의존적으로 억제시켰고 또한 t-BHP에 의해 억제된 GSH-Px, GSH-Rd 및 catalase의 활성을 증가시켰다. 이와 같이 양파추출물의 간보호 및 항산화 효과는 항산화 효소 특히 catalase의 활성 증가와 hydroxyl radical에 의해 유도된 산화억제 및 이에 따른 지질과산화 억제에 기인하는 것으로 사료된다.

Keywords

References

  1. Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105: 121-126 https://doi.org/10.1016/S0076-6879(84)05016-3
  2. Block, G., B. Patterson and A. Subar. 1992. Fruits, vegetables and cancer prevention: a review of the epidemiological evidence. Nutr. Cancer. 18:1-29 https://doi.org/10.1080/01635589209514201
  3. Bordia, A., H.C. Bansal, S.K. Arora and S.V. Singh. 1975. Effect of the essential oils of garlic and onion on alimentary hyperlipemia. Atherosclerosis 21: 15-19 https://doi.org/10.1016/0021-9150(75)90091-X
  4. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Carlberg, I. and B. Mannervik. 1955. Glutathione reductase. Methods Enzymol. 113:484-490
  6. Chu, Y.-H, C.-L. Chang and H.-F. Hsu. 2000. Flavonoid content of several vegetables and their antioxidant activity. J. Sci. Food Agri. 80:561-566 https://doi.org/10.1002/(SICI)1097-0010(200004)80:5<561::AID-JSFA574>3.0.CO;2-#
  7. Davies, M.J. 1989. Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with rat liver microsomal fractions. Biochem. J. 257:603-606 https://doi.org/10.1042/bj2570603
  8. Diplock, A.T., J.-L. Charleux, G. Crozier-Willi, F.J. Kok, C. Rice-Evans, M. Roberfroid, W. Stahl and J. Vina-Ribes. 1998. Functional food science and defence against reactive oxidative speicies. Brit. J. Nutr. 80S:S77-S112 https://doi.org/10.1079/BJN19980106
  9. Dorant, E., P.A. van den Brandt, R.A. Goldbohm and F. Sturmans. 1996. Consumption of onions and a reduced risk of stomach carcinoma. Gastroenterology. 110: 12- 20 https://doi.org/10.1053/gast.1996.v110.pm8536847
  10. Flohe., L. and W.A. Gunzler. 1984. Assays of glutathione peroxidase. Methods Enzymol. 105:114-121 https://doi.org/10.1016/S0076-6879(84)05015-1
  11. Harris, E.D. 1992. Regulation of antioxidant enzymes. FASEB. J. 6:2675-2683
  12. Hiramoto, K., N. Ojima, K.-I. Sako and K. Kikugawa. 1996. Effect of plant phenolics on the formation of the spin-adduct of hydroxyl radical and the DNA strand breaking by hydroxyl radical. BioI. Pharm. Bull. 19:558-563 https://doi.org/10.1248/bpb.19.558
  13. Hogberg, J., S. Orreniun and P.J. O'Brien. 1975. Further studies on lipid-peroxide formation in isolated hepatocytes. Eur. J. Biochem. 59:449-455 https://doi.org/10.1111/j.1432-1033.1975.tb02473.x
  14. Hwang, J.-M., C.-J. Wang, F.-P. Chou, T.-H. Tseng, Y.S. Hsieh, W.-L. Lin and C.-Y. Chu. 2002. Inhibitory effect of berberine on tert-butyl hydroperoxideinduced oxidative damage in rat liver. Arch. Toxicol. 76:664-670 https://doi.org/10.1007/s00204-002-0351-9
  15. Joyeux, M., A. Rolland, J. Fleurentin, F. Mortier and P. Dorfman. 1990. Tert-butyl hydroperoxide-induced injury in isolate rat hepatocytes: a model for studying anti-hepatotoxic crude drugs. Planta Med. 56:171-174 https://doi.org/10.1055/s-2006-960918
  16. Kendler, B.S. 1987. Garlic (Allium sativum) and onion (Allium cepa): a review of their relationship to cardiovascular disease. Prev. Med. 16:670-685 https://doi.org/10.1016/0091-7435(87)90050-8
  17. Mahesh, T. and V.P. Menon. 2004. Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats. Phytother. Res. 18:123-127 https://doi.org/10.1002/ptr.1374
  18. Masaki, N., M.E. Kyle and J.L. Farber. 1989a. Tertbutyl hydroperoxide kills cultured hypatocytes by peroxidizing membrane lipids. Arch. Biochem. Biophys.269:390-399 https://doi.org/10.1016/0003-9861(89)90122-7
  19. Masaki, N., M.E. Kyle, A. Serroni and J.L. Farber. 1989b. Mitochondrial damage as a mechanism of cell injury in the killing of cultured hepatocytes by tertbutyl hydroperoxide. Arch. Biochem. Biophys. 270:672-680 https://doi.org/10.1016/0003-9861(89)90550-X
  20. Michiels, C., M. Raes, O. Toussaint and J. Remacle. 1994. Importance of Se-glutathione peroxidase, catalase and Cu/Zn-SOD for cell survival against oxidative stress. Free Rad. BioI. Med. 17:235-248 https://doi.org/10.1016/0891-5849(94)90079-5
  21. Minotti, G. 1989. Tert-butyl hydroperoxide-dependent microsomal release of iron and lipid peroxidation. I. Evidence for the reductive release of nonheme, nonferritin iron. Arch. Biochem. Biophys. 273: 137-143 https://doi.org/10.1016/0003-9861(89)90171-9
  22. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  23. Nuutila, A.M., R. Puupponen-Pimia, M. Aami and K.M. Oksman-Caldentey. 2003. Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem. 81 :485-493. https://doi.org/10.1016/S0308-8146(02)00476-4
  24. Patil, B.S. and L.M. Pike. 1995. Distribution of quercetin content in different rings of various coloured onion (Allium cepa L.) cultivars. J. Hortic. Sci. 70:643-650 https://doi.org/10.1080/14620316.1995.11515338
  25. Price, K.R. and M.J.C. Rhodes. 1997. Analysis of the major flavonol glycosides present in four varieties of onion (Allium cepa) and changes in composition resulting from autolysis. J. Sci. Food Agri. 74:331-339 https://doi.org/10.1002/(SICI)1097-0010(199707)74:3<331::AID-JSFA806>3.0.CO;2-C
  26. RaIl, T.W. and A.L. Lehninger. 1952. Glutathione reductase of animal tissues. J. BioI. Chem. 194:119-130.
  27. Reitman, S. and S. Frankel. 1957. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 28:56-63 https://doi.org/10.1093/ajcp/28.1.56
  28. Rush, G.F., J.R. Gorski, M.G. Ripple, J. Sowinski, P. Bugelski and W.R. Hewitt. 1985. Organic hydroperoxide-induced lipid peroxidation and cell death in isolated hepatocytes. Toxicol. Appl. Pharmacol. 78:473-483 https://doi.org/10.1016/0041-008X(85)90255-8
  29. Seglen, P.O. 1976. Preparation of isolated rat liver cells. Methods Cell BioI. 13:29-83 https://doi.org/10.1016/S0091-679X(08)61797-5
  30. Srivastava, K.C. 1986. Onion exerts antiaggregatory effects by altering arachidonic acid metabolism in platelets. Prostag1andines Leukot. Med. 24:43-50 https://doi.org/10.1016/0262-1746(86)90205-2
  31. Steel, R.G.D. and J.H. Torre. 1980. Principles and Procedures of Statistics. 2nd ed, McGraw-Hill, New York. pp.186-187
  32. Sunderman, F.W. Jr., A. Marzouk, S. Hopfer, O. Zaharia and M.C. Reid. 1985. Increased lipid peroxidation in tissues of nickel chloride-treated rats. Ann. Clin. Lab. Sci. 15: 229-236
  33. Tseng, T.H., C.J. Wang, E.S. Kao and H.Y. Chu. 1996. Hibiscus protocatechuic acid protects against oxidati ve damage induced by tert- butyl hydroperoxide in rat primary hepatocytes. Chem. BioI. Interact. 101:137-148. https://doi.org/10.1016/0009-2797(96)03721-0
  34. Uchiyama, M. and M. Mihara. 1978. Determination of malona1dehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 86:271-278 https://doi.org/10.1016/0003-2697(78)90342-1
  35. Vassault, A. 1983. Lactate dehydrogenase: UV-method with pyruvate and NADH. In Bergmeyer, H.U., J. Bergmeyer and M. Grassl (eds) Methods of Enzymatic Analysis. III. Enzymes 1: Oxidoreductases, Transferases. Verlag-Chemie, Weinheim. pp.118-126