DOI QR코드

DOI QR Code

Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications

초분광 원격탐사의 특성, 처리기법 및 활용 현용

  • Kim Sun-Hwa (Department of Geoinformatic Engineering, Inha University) ;
  • Ma Jung-Rim (Department of Geoinformatic Engineering, Inha University) ;
  • Kook Min-Jung (Department of Geoinformatic Engineering, Inha University) ;
  • Lee Kyu-Sung (Department of Geoinformatic Engineering, Inha University)
  • 김선화 (인하대학교 지리정보공학과) ;
  • 마정림 (인하대학교 지리정보공학과) ;
  • 국민정 (인하대학교 지리정보공학과) ;
  • 이규성 (인하대학교 지리정보공학과)
  • Published : 2005.08.01

Abstract

Hyperspectral images have emerged as a new and promising remote sensing data that can overcome the limitations of existing optical image data. This study was designed to provide a comprehensive review on definition, data processing methods, and applications of hyperspectral data. Various types of airborne, spaceborne, and field hyperspectral image sensors were surveyed from the available literatures and internet search. To understand the current status of hyperspectral remote sensing technology and research development, we collected several hundreds research papers from international journals (IEEE Transactions on Geoscience and Remote Sensing, International Journal of Remote Sensing, Remote Sensing of Environment and AVIRIS Workshop Proceedings), and categorized them by sensor types, data processing techniques, and applications. Although several hyperspectral sensors have been developing, AVIRIS has been a primary data source that the most hyperspectral remote sensing researches were relied on. Since hyperspectral data have very large data volume with many spectral bands, several data processing techniques that are particularly oriented to hyperspectral data have been developed. Although atmospheric correction, spectral mixture analysis, and spectral feature extraction are among those processing techniques, they are still in experimental stage and need further refinement until the fully operational adaptation. Geology and mineral exploration were major application in early stage of hyperspectral sensing because of the distinct spectral features of rock and minerals that could be easily observed with hyperspectral data. The applications of hyperspectral sensing have been expanding to vegetation, water resources, and military areas where the multispectral sensing was not very effective to extract necessary information.

이 연구는 새로운 광학원격탐사자료로 대두되고 있는 초분광영상의 기본적 특성과 용어에 관한 정의를 검토하고, 지금까지 초분광영상과 관련된 주요 처리기법 및 활용분야를 광범위하게 검토하여 국내에서 초분광영상 기술의 활용을 위한 기초 자료를 제공하고자 한다. 먼저 문헌자료와 인터넷 검색을 통하여 항공기 및 위성탑재 센서와 지상용 카메라 등 현존하는 초분광센서의 종류 및 특성을 제시하였다 초분광영상과 관련된 연구 현황을 분석하기 위하여 원격탐사와 관련된 주요 국제학술지와 초분광영상 관련 학술발표회에서 발표된 논문들을 선정하여 센서별, 영상처리기법별, 주요 활용분야별로 나누어 정리하였다. 현재 항공기 및 위성 탑재 초분광영상 센서의 종류가 증가하고 있는 추세지만, 지금까지 초분광영상과 관련된 연구의 주된 부분은 미국 항공우주국에서 개발된 AVIRIS영상자료를 토대로 하고 있다. 기존의 다중분광영상에 보다 많은 분광밴드를 가진 초분광영상의 특성을 최대한 이용할 수 있는 영상처리기법이 개발되고 있다. 대기보정, 분광혼합분석, 특징추출 등이 초분광영상처리와 관련된 중요한 분야로 대두되고 있으나, 아직까지 보편적인 초분광영상 처리기술로 자리 잡기까지는 보다 많은 연구가 필요한 실정이다. 초분광영상이 가지고 있는 분광특성 정보를 최대한 이용하기에 적합한 암석 및 광물탐사가 초기의 주된 활용분야였으나, 식물의 물리화학적 정보 추출, 수질, 군용목표물 탐지 등 초분광영상의 활용은 기존의 다중분광영상의 한계를 극복하는 측면에서 확대될 전망이다.

Keywords

References

  1. Abousleman, G. P., M. W. Marcellin, and B. R Hoot, 1995. Compression of hyperspectral imagery using the 3-D DCT and Hybrid DPCMj DCT, IEEE Transactions on Geoscience and Remote Sensing, 33(1): 26-34 https://doi.org/10.1109/36.368225
  2. Aiazzi, B., P. Alba, L. Alparone, and S. Baronti, 1999. Lossless Compression of Multi/HyperSpectral Imagery Based on a 3-D Fuzzy Prediction, IEEE Transactions on Geoscience and Remote Sensing, 37(5): 2287-2294 https://doi.org/10.1109/36.789625
  3. Aiazzi, B., L. Alparone, and S. Baronti, 2001. Near Lossless compression of 3-D optical data IEEE Transactions on Geoscience and Remote Sensing, 39(11): 2547-2557 https://doi.org/10.1109/36.964993
  4. Apan, A., A. Held, S. Phinn, and J. Markley, 2004. Detecting sugarcane 'orange rust' disease using EO-1 Hyperion hyperspectral imagery, International Journal of Remote Sensing, 25(2): 489-498 https://doi.org/10.1080/01431160310001618031
  5. Asner, G. P. and K. B. Heidebrecht, 2002. Spectral unmixing of vegetation, soil and dry carbon cover in arid regions:comparing multispectral and hyperspectral observations, International Journal of Remote Sensing, 23(19): 3939-3958 https://doi.org/10.1080/01431160110115960
  6. Asner, G. P. and K. B. Heidebrecht, 2003. Imaging spectroscopy for desertification studies: comparing A VIRIS and EO-1 Hyperion in Argentina Drylands, IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1283-1296 https://doi.org/10.1109/TGRS.2003.812903
  7. Asner, G. P., M. M. C. Bustamante, and A. R. Townsend, 2003. Scale dependence of biophysical structrue in deforested areas bordering the Tapaos National Forest, Central Amazon, Remote Sensing of Environment, 87: 507-520 https://doi.org/10.1016/j.rse.2003.03.001
  8. Atkinson, P. M., 1997. On estimating measurement error in remotely sensed images with the variogram, International Journal of Remote Sensing, 18(14): 3075-3084 https://doi.org/10.1080/014311697217224
  9. Bachmann, C. M., 2003. Improving the performance of classifiers in High dimensional remote sensing applications: An adaptive resampling strategy for error prone example, IEEE Transactions on Geoscience and Remote Sensing, 41(9): 2101-2112 https://doi.org/10.1109/TGRS.2003.817207
  10. Bachmann, C. M., M. H. Bettenhausen, and R. A. Fusina, 2003. A Credit Assignment Approach to fusing Classifiers of Multiseason Hyperspectral Imagery, IEEE Transactions on Geoscience and Remote Sensing, 41(11): 2488-2499 https://doi.org/10.1109/TGRS.2003.818537
  11. Bateson, C. A., G. P. Asner, and C. A. Wessman, 2000. Endmember Bundles: A New Approach to incorporating endmember variability into spectral mixture analysis, IEEE Transactions on Geoscience and Remote Sensing, 38(2): 1083-1094 https://doi.org/10.1109/36.841987
  12. Ben-Dor, E., N. Levin, and H. Saaroni, 2001. A spectral based recognition of the urban environment using the visible and near infrared spectral region. A case study over Tel Aviv, Israel International Journal of Remote Sensing, 22(11): 2193-2218
  13. Ben-Dor, E., B. Kindel, and A. F. H. Goetz, 2004. Quality assessment of several methods to recover surface reflectance using synthetic imaging spectroscopy data, Remote Sensing of Environment, 90: 389-404 https://doi.org/10.1016/j.rse.2004.01.014
  14. Benediktsson, J. I., J. R. Sveinsson, and K. Amason, 1995. Classification and Feature Extraction of A VIRIS Data, IEEE Transactions on Geoscience and Remote Sensing, 33(5): 1194-1205 https://doi.org/10.1109/36.469483
  15. Biggar, S. F., K. J. Thome, and W. Wisniewski, 2003. Vicarious radiometric calibration of EO-1 sensors by reference to High-reflectance ground targets, IEEE Transactions on Geoscience and Remote Sensing, 41(6): 11741179 https://doi.org/10.1109/TGRS.2003.813211
  16. Blackburn, G. A. and E. J. Milton., 1997. An ecological survey of deciduous woodlands using airborne remote sensing and geographical information system(GIS), International Journal of Remote Sensing, 18(9): 1919-1935 https://doi.org/10.1080/014311697217954
  17. Brando, V. E. and A. G. Dekker, 2003. Satellite Hyperspectral Remote Sensing of Estimating Esturaine and Coastal Water Quality, IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1378-1387 https://doi.org/10.1109/TGRS.2003.812907
  18. Bruce, L. M., C. Morgan, and S. Larsen, 2001. Automated Detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms, IEEE Transactions on Geoscience and Remote Sensing, 39(10): 2217-2226 https://doi.org/10.1109/36.957284
  19. Cairns, B., B. E. Carlson, R. Ing., A. A. Lacis, and V. Oinas, 2003. Atmospheric Correction and Its Application to an Analysis of hyperion Data, IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1232-1244 https://doi.org/10.1109/TGRS.2003.813134
  20. Chabrillat, S., P. C. Pinet, G. Ceulneer, P. E. Johnson, and J. F. Mustard, 2000. Ronda peridotite massif: methodology for its geological mapping and lithological discrimination from airborne hyperspecral data, International Journal of Remote Sensing, 21(12): 2363-2388 https://doi.org/10.1080/01431160050030510
  21. Chabrillat, S., A. F. H. Goetz, L. Krosley, and H. W. Olsen, 2002. Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution, Remote Sensing of Environment, 82: 431-445 https://doi.org/10.1016/S0034-4257(02)00060-3
  22. Chang, C. I. and O. Du, 1999. Interference and Noise Adjusted principal components analysis, IEEE Transactions on Geoscience and Remote Sensing, 37(5): 2387-2396 https://doi.org/10.1109/36.789637
  23. Chang, C. I. and H. Ren, 2000. An Experiment-Based Quantitative and Comparative Analysis of Target Detection and Image Classification Algorithm for Hyperspectral Imagery, IEEE Transaction on Geoscience and Remote Sensing, 38(2): 1044-1063 https://doi.org/10.1109/36.841984
  24. Chang, C. I., S. S. Chiang, J. A Smith, and K. W. Ginsberg, 2002. Linear Spectral Random Mixture Analysis for Hyperspectral Imagery, IEEE Transactions on Geoscience and Remote Sensing, 40(2): 375-392 https://doi.org/10.1109/36.992799
  25. Chang, C. I., 2002. Target Signature constrained mixed pixel classification for hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, 40(5): 1065-1081 https://doi.org/10.1109/TGRS.2002.1010894
  26. Chang C. I., Ren H., and Chiang S. S., 2001. Realtime processing algorithms for target detection and classification in hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, 39(4): 760-768 https://doi.org/10.1109/36.917889
  27. Crosta, A. P., C. Sabine, and J. V. Taranik, 1998. Hydrothermal Alteration Mapping at bodie, California, Using A VIRIS hyperspectral data, Remote Sensing of Environment, 65: 309-319 https://doi.org/10.1016/S0034-4257(98)00040-6
  28. Curran, P. J. and J. L. Dungan, 1989. Estimation of Signal to Noise: Anew procedure applied to A VlRIS data, IEEE Transactions on Geoscience and Remote Sensing, 27(5): 620-628 https://doi.org/10.1109/TGRS.1989.35945
  29. Datt, B., T. R. McVicar, T. G. Van Niel, D. L. B. Jupp, and J. S. Pearlman, 2003. Preprocessing EO-l Hyperion Hyperspectral data to Support the Application of Agricultural Indexs, IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1246-1259 https://doi.org/10.1109/TGRS.2003.813206
  30. Dennison, P. E. and D. A. Roberts, 2003. The effects of vegetation phenology on endmember selection and species mapping in southern California chaparral, Remote Sensing of Environment, 87: 295-309 https://doi.org/10.1016/j.rse.2003.07.001
  31. Drake, N. A., S. Mackin, and J. J. Settle, 1999. Mapping vegetation, soils, and geology in semiarid shrublands using spectral matching and mixture modeling of SWIR A VIRIS iamgery, Remote Sensing of Environment, 68: 12-25 https://doi.org/10.1016/S0034-4257(98)00097-2
  32. Du, Q. and C. I. Chang, 2004. Linear Mixture Analysis based compression for hyperspectral image Analysis, IEEE Transactions on Geoscience and Remote Sensing, 42(4): 875-89l https://doi.org/10.1109/TGRS.2003.816668
  33. Farrand, W. H. and J. C. Harsanyi, 1997. Mapping the distribution of mine tailings in the Coeur d'Alene River Valley, Idaho through the use of a Constrained Energy Minimization technique, Remote Sensing of the Environment, 59: 64-76 https://doi.org/10.1016/S0034-4257(96)00080-6
  34. Feind, R. E. and R. M. WELCH, 1995. Cloud fraction and cloud shadow property retrievals from coregistered TIMS and AVIRIS imagery: the use of cloud morphology for registration, IEEE Transactions on Geoscience and Remote Sensing, 33(1): 172-184 https://doi.org/10.1109/36.368211
  35. Gao, B. C. and A. F. H. Goetz, 1995. Retrieval of Equivalent Water Thickness and Information Related to Biochemical Components of Vegetation Canopies from AVIRIS Data, Remote Sensing of Environment, 52: 155-162 https://doi.org/10.1016/0034-4257(95)00039-4
  36. Gao, B. C, P. Yang, W. Han, R. R. Li, and W. J. Wiscombe, 2002. An algorithm using visible and 1.38m channels to retrieve cirrus cloud reflectances from aircraft and satellite data, IEEE Transactions on Geoscience and Remote Sensing, 40(8): 1659-1668 https://doi.org/10.1109/TGRS.2002.802454
  37. Gao, B. C, M. J. Montes, and C. O. Davis, 2004. Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum matching technique, Remote Sensing of Environment, 90: 424-433 https://doi.org/10.1016/j.rse.2003.09.002
  38. Goodenough, D. G., A. Dyk, K. O. Niemann, J. S. Pearlman, H Chen, T. Han, M. Murdoch, and C. West, 2003. Processing hyperion and ALI for Forest Classification, IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1321-1331 https://doi.org/10.1109/TGRS.2003.813214
  39. Galvao, L. S., W. P. Filho, M. M. Abdon, E. M. M. L. Novo, J. S. V. Silva, and F. J. Ponzoni, 2003. Spectral reflectance characterization of shallow lakes from the Brazilian Pantanal wetlands with field and airborne hyperspectral data, International Journal of Remote Sensing, 24(21): 4093-4112 https://doi.org/10.1080/0143116031000070382
  40. Garcia, M. and S. L. Us tin, 2001. Detection of Interannual Vegetaion Responses to Climatic Variability using AVIRIS data in a coastal savanna in California, IEEE Transactions on Geoscience and Remote Sensing, 39(7): 14801490 https://doi.org/10.1109/36.934079
  41. Gelpi, C. C., 2000. Removing Path Scattered Radiance from Over ocean spectrometer Images for Water vapor estimation, Remote Sensing of Environment, 74: 414-421 https://doi.org/10.1016/S0034-4257(00)00134-6
  42. Goetz A. F. H., 1991. Imaging spectrometry for studying Earth, Air, Fire and Water, EARSeL Advances in Remote Sensing, 1: 3-15
  43. Goetz, A. F. H, B. C. Kinde , M. Ferri, and Z. Qu, 2003. HATCH: Results from simulated radiances, AVIRIS and Hyperion, IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1215-1222 https://doi.org/10.1109/TGRS.2003.812905
  44. Gong, P., J. R. Miller, and M. Spanner, 1994. Forest canopy closure from classification and spectral unmixing of scene components multisensor evaluation of an open canopy, IEEE Transactions on Geoscience and Remote Sensing, 32(5): 1067-1080 https://doi.org/10.1109/36.312895
  45. Gong, P., R. Pu, and R. C. Heald, 2002. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia, International Journal of Remote Sensing, 23(9): 1827-1850 https://doi.org/10.1080/01431160110075622
  46. Green, A. A., M. Berman, P. Switzer, and M. D. Graig, 1998. A transformation for ordering multispectral data in terms of image quality with implications for noise removal, IEEE Transactions on Geoscience and Remote Sensing, 26(1): 65-74 https://doi.org/10.1109/36.3001
  47. Gu, D., A. R. Gillespie, A. B. Kahle, and F. D. Palluconi, 2000. Autonomous Atmospheric Compensation(AAC) of High Resolution Hyperspectral thermal infrared remote sensing imagery, IEEE Transactions on Geoscience and Remote Sensing, 38(6): 2557-2570 https://doi.org/10.1109/36.885203
  48. Gu, Y, J. M. Anderson, and J. G. C. Monk, 1999. An approach to the spectral and radiometric calibration of the VIFIS system, International Joural of Remote Sensing, 20(3): 535-548 https://doi.org/10.1080/014311699213325
  49. Hapke, B., 1981. Bidirectional reflectance spectroscopy 1. Theory, J. Geophys. Res., 86: 3039-3054 https://doi.org/10.1029/JB086iB04p03039
  50. Hapke, B., 1993. Theory of Reflectance and Emittance Spectroscopy, Cambridge, U.K.: Cambridge Univ. Press
  51. Herold, M., D. A. Roberts, M. E. Gardner, and P. E. Dennison, 2004. Spectrometry for urban area remote sensing-development and analysis of a spectral library from 350 to 2400nm, Remote Sensing of Environment, 91: 304-319 https://doi.org/10.1016/j.rse.2004.02.013
  52. Hoffman, R. N. and D. W. Johnson, 1994. Application of EOF's to Multispectral Imagery: Data Compression and Noise Detection for AVIRIS, IEEE Transactions on Geoscience and Remote Sensing, 32(1): 25-34 https://doi.org/10.1109/36.285186
  53. Hochberg, E. J. and M. J. Atkinson, 2003. Capabilities of remote sensors to classify coral, algae, and sand as pure and mixed spectra, Remote Sensing of Environment, 85: 174-189 https://doi.org/10.1016/S0034-4257(02)00202-X
  54. Hoogenboom, H. J., A. G. Dekker, and I. A. Althuis, 1998. Simulation of A VIRIS Sensitivity for Detecting Chlorophyll over Coastal and Inland Waters, Remote Sensing of Environment, 65: 333-340 https://doi.org/10.1016/S0034-4257(98)00042-X
  55. Hubbard, B. E., J. K.Crowley, and D. R. Zimbelman, 2003. Comparative Alteration Mineral Mapping Using Visible to Shortwave Infrared(0.4-2.5,$\mu$m) Hyperion, ALI, and ASTER Imagery, IEEE Transactions on Geoscience and Remote Sensing, 41(6): 14011410 https://doi.org/10.1109/TGRS.2002.808066
  56. Ifarraguerri, A. and C. I. Chang, 1999. Multispectral and Hyperspectral Image Analysis with Convex Cones, IEEE Transactions on Geoscience and Remote Sensing, 37(2): 756-770 https://doi.org/10.1109/36.752192
  57. Ingram, P. M. and A. H. Muse, 2001. Sensitivity of Iterative Spectrally Smooth Temperature/ Emissivity Separation to algorithmic assumptions and measurement noise, IEEE Transactions on Geoscience and Remote Sensing, 39(10): 2158-2167 https://doi.org/10.1109/36.957278
  58. Jacquemoud, S., F. Baret, B. Andrieu, F. M. Danson, and K. Jaggard, 1995. Extraction of Vegetation Biophysical Parameters by Inversion of the PROSPECT + SAIL models on Sugar beet canopy reflectance data. Application to TM and A VIRIS sensors, Remote Sensing of Environment, 52: 163-172 https://doi.org/10.1016/0034-4257(95)00018-V
  59. Jia, X. and J. A. Richards, 1998. Progressive two class decision classifier for optimization class discriminations, Remote Sensing of Environment, 63: 289-297 https://doi.org/10.1016/S0034-4257(97)00164-8
  60. Jia, X. and J. A. Richards, 2002. Cluster Space Representation for Hyperspectral Data Classification, IEEE Transactions on Geoscience and Remote Sensing, 40(3): 593-598 https://doi.org/10.1109/TGRS.2002.1000319
  61. Jiang, X., L. Tang, and C. Wang, 2004. Spectral characteristics and feature selection of hyperspectral remote sensing data, International Journal of Renwte Sensing, 25(1): 51-59 https://doi.org/10.1080/0143116031000115292
  62. Jimenez, L. O. and D. A. Landgrebe, 1999. Hyperspectral Data Analysis and supervised feature reduction via projection pursuit, IEEE Transactions on Geoscience and Remote Sensing, 37(6): 2653-2667 https://doi.org/10.1109/36.803413
  63. Jong, S. M., E. J. Pebesma, and B. Lacaze, 2003. Above ground biomass assessment of Mediterranean forests using airborne imaging spectrometry: the DAIS Peyne experiment, International Journal of Remote Sensing, 24(7): 1505-1520 https://doi.org/10.1080/01431160210145560
  64. JPL, 2005. NASA JPL Homepage (http://aviris.jpl. nasa.gov)
  65. Kaewpijit, S., J. Le Moigne, and T. El Ghazawi, 2003. Automatic Reduction of Hyperspectral Imagery Using Wavelet Spectral Analysis, IEEE Transactions on Geoscience and Remote Sensing, 41(4): 863-871 https://doi.org/10.1109/TGRS.2003.810712
  66. Kallio, K., S. Koponen, and J. Pulliainen, 2003. Feasibility of airborne imaging spectrometry for lake monitoring a case study of spatial chlorophyll a distribution in two, International Journal of Renwte Sensing, 24(19): 3771-3790 https://doi.org/10.1080/0143116021000023899
  67. Keshava, N. and J. F. Mustard, 2002, Spectral Unmixing, IEEE Signal Processing Magazine, 19(1): 44-57 https://doi.org/10.1109/79.974727
  68. Kim, B. Y. and D. A. Landgrebe, 1991. Hierarchical classifier design in high dimensional, numerous class cases, IEEE Transactions on Geoscience and Remote Sensing, 29(4): 518-528 https://doi.org/10.1109/36.135813
  69. Kirkland, L., K. Herr, E. Keirn, P. Adams, J. Salisbury, J. Hackwell, and A Treiman, 2002. First use of an airborne thermal infrared hyperspectral scanner for compositional mapping, Remote Sensing of Environment, 80: 447-459 https://doi.org/10.1016/S0034-4257(01)00323-6
  70. Kokaly, R. F., D. G. Despain, R. N, Clark, and K. E. Livo, 2003. Mapping vegetation in yellowstone national park using spectral feature analysis of A VIRIS data, Remote Sensing of Environment, 84: 437-456 https://doi.org/10.1016/S0034-4257(02)00133-5
  71. Koponen, S., J. Pulliainen, K. Kallio, and M. Hallikainen, 2002. Lake water Quality classification with airborne hyperspectral spectrometer and simulated MERIS data, Remote Sensing of Environment, 79: 51-59 https://doi.org/10.1016/S0034-4257(01)00238-3
  72. Kruse, F. A, J. W. Boardman, and J. F. Huntington, 2003. Comparison of Airborne hyperspectral Data and EO-1 Hyperion for Mineral Mapping; IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1388-1400 https://doi.org/10.1109/TGRS.2003.812908
  73. Kumar,S., J. Ghosh, and M. M. Crawford, 2001. Best bases feature extraction algorithms for classification of hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing, 39(7): 1368-1379 https://doi.org/10.1109/36.934070
  74. Kuo, B. C. and D. A Landgrebe, 2002. A Covariance estimator for small sample size classification problems and its application to feature extraction, IEEE Transactions on Geoscience and Remote Sensing, 40(4): 814-81 https://doi.org/10.1109/TGRS.2002.1006358
  75. Landgrebe D., 2001. Analysis of Multispectral and Hyperspectral Image Data, John Wiley & Sans, 2001
  76. Launeau, P., J. Girardeau, C. Satin, and J. M. Tubia, 2004. Comparison between field measurements and airborne visible and infrared mapping spectrometry(AVIRIS and HyMap) of the Ronda peridotite massif (south west Spain), International Joural of Remote Sensing, 25(14): 2773-2792 https://doi.org/10.1080/01431160310001609699
  77. Lee, Z. P. and K. L. Carder, 2004. Absorption spectrum of phytoplankton pigments derived from hyperspectal remote sensing reflectance, Remote Sensing of Environment, 89: 361-368 https://doi.org/10.1016/j.rse.2003.10.013
  78. Longhi, I., M. Sgavetti, R Chiari, and C. Mazzoli, 2001. Spectral analysis and classification of metamorphic rocks from laboratory reflectance spectra in the 0.4-2.5 interval: a tool for hyperspectral data interpretation, International Journal of Remote Sensing, 22(18): 3763-3782 https://doi.org/10.1080/01431160010006980
  79. Lu, D., P. Mausel, E. Brondizio, and E. Moran, 2004. Change Detection techniques, International Journal of Remote Sensing, 25(12): 2365-2407 https://doi.org/10.1080/0143116031000139863
  80. Manolakis, D., C. Siracusa, and G. Shaw, 2001. Hyperspectral Subpixel Target Detection Using the Linear Mixing Model, IEEE Transactions on Geoscience and Remote Sensing, 39(7): 1392-1409 https://doi.org/10.1109/36.934072
  81. Marion, R, R Michel, and C. Faye, 2004. Measuring Trace Gases in Plumes From Hyperspectral Remotely Sensed data, IEEE Transactions on Geoscience and Remote Sensing, 42(4): 854-864 https://doi.org/10.1109/TGRS.2003.820604
  82. Metternicht, G. I. and J. A. Zinck, 2003. Remote Sensing of soil salinity: potentials and constraints, Remote Sensing of Environment, 85: 1-20 https://doi.org/10.1016/S0034-4257(02)00188-8
  83. Mutanga, O. and A. K. Skidmore, 2004. Integrating imaging spectroscopy and neural networks to map grass uality in the Kruger National Park, South Afria, Remote Sensing of Environment, 90: 104-115 https://doi.org/10.1016/j.rse.2003.12.004
  84. Niemann, K. O., D. G. Goodenough, and A. S. Bhogal, 2002. Remote Sensing of relative moisture status in old growth Douglas fir, International Journal of Remote Sensing, 23(2): 395-400 https://doi.org/10.1080/01431160110073110
  85. Okin, G. S. and T. H. Painter, 2004. Effect of grain size on remotely sensed spectral reflectance of sandy desert surfaces, Remote Sensing of Environment, 89: 272-280 https://doi.org/10.1016/j.rse.2003.10.008
  86. Palacios Orueta, A. and S. L. Ustin, 1996. Multicariate statistical classification of soil spectra, Remote Sensing of Environment, 57: 108-118 https://doi.org/10.1016/0034-4257(95)00250-2
  87. Pekkarinen, A., 2002. A method for the segmentation of very high spatial resolution images of forested landscapes, International Journal of Remote Sensing, 23(14): 2817-2836 https://doi.org/10.1080/01431160110076162
  88. Pu, R, Gong P., and G. S. Biging, 2003. Simple calibration of AVIRIS data and LAI mapping of forest plantation in southern argentina, International Journal of Remote Sensing, 24(23): 4699-4714 https://doi.org/10.1080/0143116031000082433
  89. Pu, R., Q. Yu. P. Gong, and G. S. Biging, 2005. EO-1 Hyperion, ALI and Landsat 7 ETM+ data comparison for estimating forest crown closure and leaf area index, International Journal of Remote Sensing, 26(3): 457-474 https://doi.org/10.1080/01431160512331299324
  90. Rand, R S. and D. M. Keenan, 2001. A spectral mixture process conditioned by cibbs based partitioning, IEEE Transactions on Geoscience and Remote Sensing, 39(7): 1421-1434 https://doi.org/10.1109/36.934074
  91. Rees, W. G., O. V. Tutubalina, and E.I. Golubeva, 2004. Reflectance spectra of subarctic lichens between 400 and 2400 nm, Remote Sensing of Environment, 90: 281-292 https://doi.org/10.1016/j.rse.2003.12.009
  92. Resmini, R F., M. E. Kappus, W. S. Sldrich, J. C. Haranyi, and M. Anderson, 1997. Mineral mapping withhyperspectral Digital Imagery Collection Experiment (HYDICE) sensor data at Cuprite, Nevada, U.S.A. International Journal of Remote Sensing, 18(7): 1553-1570 https://doi.org/10.1080/014311697218278
  93. Riano, D., E. Chuvieco, S. Ustin, R Zomer, P. Dennison, D. Roberts, and J. Salas, 2002. Asessment of vegetation regeneration after fire through multi temporal analysis of AVIRIS images in the Santa Monica Mountains, Remote Sensing of Environment, 79: 60-71 https://doi.org/10.1016/S0034-4257(01)00239-5
  94. Richter, R. and D. Schlapfer, 2002. Geo atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric .topographic correction, International Journal of Remote Sensing, 23(13): 2631-2649 https://doi.org/10.1080/01431160110115834
  95. Roberts, D. A., M. O. Smith, and J. B. Adams, 1993. Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data, Remote Sensing of Environment, 44: 255-269 https://doi.org/10.1016/0034-4257(93)90020-X
  96. Roberts, D. A., P. E. Dennison, M. E. Gardner, Y. Hetzel, S. L. Ustin, and C. T. Lee, 2003. Evaluation of the Potential of Hyperion for Fire Danger Assessment by Comparison to the Airborne Visible/Infrared Imaging Spectrometer, IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1297-1310 https://doi.org/10.1109/TGRS.2003.812904
  97. Ryan, M. J. and J. F. Arnold, 1997. The lossles compression of AVIRIS images by vector quantization, IEEE Transactions on Geoscience and Remote Sensing, 35(3): 546-550 https://doi.org/10.1109/36.581964
  98. Sanders, L. C. J. R. Schott, and R. Raqueno, 2001. AVNIR/SWIR atmospheric correction algorithm for hyperspectal imagery with adjacency effect, Remote Sensing of Environment, 78: 252-263 https://doi.org/10.1016/S0034-4257(01)00219-X
  99. Schmid, T., M. Koch, J. Gumuzzio, and P. M. Mather, 2004. A spectral library for a semi arid wetland and its application to studies of wetland degradation using hyperspectral and multispectral data, International Journal of Remote Sensing, 25(13): 2485-2496 https://doi.org/10.1080/0143116031000117001
  100. Seeker, J., K. Staenz, R. P. Gauthier, and P. Budkewitsch, 2001. Vicarious calibration of airborne hyperspectral sensors in operational environments, Remote Sensing of Environment, 76: 81-92 https://doi.org/10.1016/S0034-4257(00)00194-2
  101. Serpico, S. B. and L. Bruzzone, 2001. Anew search algorithm for feature selection in hyperspectral remote sensing images, IEEE Transactions on Geoscience and Remote Sensing, 39(7): 1360-1367 https://doi.org/10.1109/36.934069
  102. Shaw, G. and D. Manolakis, 2002, Singal Processing for Hyperspectral Image Exploitation, IEEE Signal Processing Magazine, 19(1): 12-16
  103. Shippert, P., 2004. Why Use Hyperspectral Imagery?, Photogrammetric Engineering & Remote Sensing, 70(4): 377-380
  104. Silvestri, S., M. Marani, J. Settle, F. Benvenuto, and A. Marani, 2002. Salt marsh vegetation radiomerty data analysis and scaling, Remote Sensing of Environment, 80: 473-482 https://doi.org/10.1016/S0034-4257(01)00325-X
  105. Smith, M. L., M. E. Martin, L. Plourde, and S. V. Ollinger, 2003. Analysis of Hyperspectral data for estimation of temperate forest canopy nitrogen concentration: comparison Between an Airborne(AVIRIS) and a space borne(Hyperion) Senor, IEEE Transactions on Geoscience and Remote Sensing, 41(6): 13321337 https://doi.org/10.1109/TGRS.2003.813128
  106. Teillet, P. M., G. Fedosejevs, R. P. Gauthier, N. T. O'Neill, K. J. Thome, S. F. Biggar, H. Ripley, and A. Meygret, 2001. A generalized approach to the vicarious calibration of multiple Earth observation sensors using hyperspectral data, Remote Sensing of Environment, 77: 304-327 https://doi.org/10.1016/S0034-4257(01)00211-5
  107. Thiemann, S. and H. Kaufmann, 2002. Lake water quality monitoring using hyperspectral airborne data a semiempirical multisensor and multitemporal approach for the Mecklenburg Lake Distric, Germany Remote Sensing of Environment, 81: 228-237 https://doi.org/10.1016/S0034-4257(01)00345-5
  108. Tu, T. M., C. H. Chen, and C. I. Chang, 1997. A Posteriori Least Squares Orthogonal Subspace projection approach to Desired signature extraction and detection, IEEE Transactions on Geoscience and Remote Sensing, 35(1): 127-139 https://doi.org/10.1109/36.551941
  109. Tu, T. M., C. H. Chen, J. L. Wu, and C. I. Chang, 1998. A Fast Two stage classification method for high dimensional remote sensing data, IEEE Transactions on Geoscience and Remote Sensing, 36(1): 182-191 https://doi.org/10.1109/36.655328
  110. Ustin, S. L. and Q. F. Xiao, 2001. Mapping successional boreal forests in interior central Alaska, International Journal of Remote Sensing, 22(6): 1779-1797 https://doi.org/10.1080/01431160118269
  111. Van der Meer, F., F. Lihui, and J. Bodechtel, 1997 MAIS imaging spectrometer data analysis for Ni Cu prospecting in ultramafic rocks of the Jinchuan group, China International Journal of Remote Sensing, 18(13): 2743-2761 https://doi.org/10.1080/014311697217314
  112. Van der Meer, F., 2000. Spectral curve shape matching with a continnurn removed CCSM algorithm, International Journal of Remote Sensing, 21(16): 3179-3185 https://doi.org/10.1080/01431160050145063
  113. Van der Meer, F. and V. Kato, 2002. Developing a schematic petrogenetic transect for a contact aureole using field spectrometry; a case study in Los Santos, Salamanca Province, central western Spain, International Journal of Remote Sensing, 23(23): 5087-5094 https://doi.org/10.1080/01431160210147063
  114. Van der Meer, F., 2003. Bayesian inversion of imaging spectrometer data using a fuzzy geological outcrop model, International Journal of Remote Sensing, 24(22): 4301-4310 https://doi.org/10.1080/0143116021000047929
  115. Verhoef, W. and H. Bach, 2003. Simulation of hyperspectral and directional radiance images using coupled biophysical and atmosphere radiative transfer models, Remote Sensing of Environment, 87: 23-41 https://doi.org/10.1016/S0034-4257(03)00143-3
  116. Viggh, H. E. M. and D. H. Staelin, 2003. Spatial surface prior infomation reflectance estimation (SPIRE) algorithm, IEEE Transactions on Geoscience and Remote Sensing, 41(11): 2424-2435 https://doi.org/10.1109/TGRS.2003.818874
  117. Wagtendonk, J. W, R. R. Root, and C. H. Key, 2004. Comparison of AVIRIS and Landsat ETM + detection capabilities for burn severity, Remote Sensing of Environment, 92: 397-408 https://doi.org/10.1016/j.rse.2003.12.015
  118. Warner, T. A. and M. C. Shank, 1997. Spatial Autocorrelation Analysis of Hyperspectral Imagery for Feature Selection, Remote Sensing of Environment, 60: 58-70 https://doi.org/10.1016/S0034-4257(96)00138-1
  119. Warner, T. A., K. Steinmaus, and H. Foote, 1999. An evaluation of spatial autocorrelation feature selection, International Journal of Remote Sensing, 20(8): 1601-1616 https://doi.org/10.1080/014311699212632
  120. Whiting, M. L., L. Li, and S. L. Ustin, 2004. Predicting water content using Gaussian model on soil spectra, Remote Sensing of Environment, 89: 535-552 https://doi.org/10.1016/j.rse.2003.11.009
  121. Williams, A. P. and Jr R. E. Hunt, 2002. Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering, Remote Sensing of Environment, 82: 446-456 https://doi.org/10.1016/S0034-4257(02)00061-5
  122. Yang, H, F. Van der Meer, W Bakke, and Z. J. Tan, A back propagation neural network for mineralogical mapping from AVIRlS data, 1999. International Journal of Remote Sensing, 20(1): 97-110 https://doi.org/10.1080/014311699213622
  123. Yao, H. and L. Tian, 2003. A genetic algorithm based selective principal component analysis (GA SPCA) method for high dimensional data feature extraction, IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1469-1478 https://doi.org/10.1109/TGRS.2003.811691
  124. Zarco Tejada, P. J., J. R. Miller, T. L. Noland, G. H. Mohammed, and P. H. Sampson, 2001. Scaling up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing, 39(7): 1491-1507 https://doi.org/10.1109/36.934080
  125. Zarco Tejada, P. J., J. C. Pushnik, S. Dobrowskui, and S. L. Ustin, 2003. Steady state chlorophyll a fluorescence detection from canopy derivatice reflectance and double peak red edge effects, Remote Sensing of Environment, 84: 283-294 https://doi.org/10.1016/S0034-4257(02)00113-X