Droplet deformability and emulsion rheology: steady and dynamic behavior

  • Saiki Yasushi (Ian Wark Research Institute, The ARC Special Research Centre for Particle and Material Interfaces, University of South Australia) ;
  • Prestidge Clive A. (Ian Wark Research Institute, The ARC Special Research Centre for Particle and Material Interfaces, University of South Australia)
  • Published : 2005.12.01

Abstract

The static and dynamic rheological behavior of concentrated sodium dodecylsulfate (SDS) stabilized, deformability controllable polydimethylsiloxane (PDMS) emulsions is reported and comparisons made with silica (hard sphere) suspensions. Steady-mode measurements indicate 'hard' (viscoelastic) droplets behave as hard spheres, while 'soft' (viscous) droplets induce structural flexibility of the emulsion against shear. Dynamic-mode measurements reveal that viscoelasticity of droplets provides the great magnitude of elasticity for the 'hard' emulsion, while formation of planar films between droplets is the origin of the elasticity of 'soft' emulsions. Combination of steady and dynamic rheological behavior has enabled depiction of droplet structure evolution in relation to the shear stress applied, especially by taking advantage of the normal force that reflects the transient deformation of droplets.

Keywords

References

  1. Barnes, H. A., 1994, Rheology of emulsions - a review, Colloids Surf. A 91, 89 https://doi.org/10.1016/0927-7757(93)02719-U
  2. Barnes, H. A., 1995, A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character and cure, J. Non-Newtonian Fluid Mech. 56, 221 https://doi.org/10.1016/0377-0257(94)01282-M
  3. Dimitrova, T. D. and F. Leal-Calderon, 2004, Rheological properties of highly concentrated protein-stabilized emulsions, Adv. Colloid Interface Sci. 108-09, 49 https://doi.org/10.1016/j.cis.2003.10.002
  4. Freitas, S. P., F. C. Da Silva, R. C. A. Lago and R. Y. Qassim, 1996, Rheological behaviour of processed avocado pulp emulsions, Internat. J. Food Sci. Technol. 31, 319 https://doi.org/10.1046/j.1365-2621.1996.00340.x
  5. Gillies, G. and C. A. Prestidge, 2004, Interaction forces, deformation and nano-rheology of emulsion droplets as determined by colloid probe AFM, Adv. Colloid Interface Sci. 108-109, 197 https://doi.org/10.1016/j.cis.2003.10.007
  6. Gillies, G., C. A. Prestidge and P. Attard, 2002, An AFM Study of the Deformation and Nanorheology of Cross-Linked PDMS Droplets, Langmuir 18, 1674 https://doi.org/10.1021/la011461g
  7. Goller, M. I., T. M. Obey, D. O. H. Teare, B. Vincent and M. R. Wegener, 1997, Inorganic 'silicone oil' microgels, Colloids Surf. A 123-124, 183 https://doi.org/10.1016/S0927-7757(96)03777-6
  8. Gotze, W. and L. Sjogren, 1992, Relaxation processes in supercooled liquids, Rep. Prog. Phys. 55, 241 https://doi.org/10.1088/0034-4885/55/3/001
  9. Harkins, W. D. and F. E. Brown, 1919, The determination of surface tension and the weight of falling drops: the surface tension of water and benzene by the capillary height method, J. Am. Chem. Soc. 41, 499 https://doi.org/10.1021/ja01461a003
  10. Kiss, G. and R. S. Porter, 1998, Mechanical and thermophysical properties of polymer liquid crystals, Chapman & Hall, London
  11. Lacasse, M. D., G. S. Grest, D. Levine, T. G. Mason and D. A. Weitz, 1996, Model for the Elasticity of Compressed Emulsions, Phys. Rev. Lett. 76, 3448 https://doi.org/10.1103/PhysRevLett.76.3448
  12. Mason, T. G. and D. A. Weitz, 1995, Linear Viscoelasticity of Colloidal Hard Sphere Suspensions near the Glass Transition, Phys. Rev. Lett. 75, 2770 https://doi.org/10.1103/PhysRevLett.75.2770
  13. Mason, T. G., M. D. Lacasse, G. S. Grest, D. Levine, J. Bibette and D. A. Weitz, 1997, Osmotic Pressure and Viscoelastic Shear Moduli of Monodisperse Emulsions, Phys. Rev. E 56, 3150 https://doi.org/10.1103/PhysRevE.56.3150
  14. Montesi, A., A. A. Pena and M. Pasquali, 2004, Vorticity Alignment and Negative Normal Stresses in Sheared Attractive Emulsions, Phys. Rev. Lett. 92, 058303 https://doi.org/10.1103/PhysRevLett.92.058303
  15. Nawab, M. A. and S. G. Mason, 1958, The Viscosity of Dilute Emulsions, Trans. Faraday Soc. 54, 1712 https://doi.org/10.1039/tf9585401712
  16. Obey, T. M. and B. Vincent, 1994, Novel Monodisperse 'Silicone Oil'/Water Emulsions, J. Colloid Interface Sci. 163, 454 https://doi.org/10.1006/jcis.1994.1124
  17. Raghavan, S. R. and S. A. Khan, 1997, Shear-Thickening Response of Fumed Silica Suspensions under Steady and Oscillatory Shear, J. Colloid Interface Sci. 185, 57 https://doi.org/10.1006/jcis.1996.4581
  18. Saiki, Y. and C. A. Prestidge, 2005, Effects of Droplet Deformability on Emulsion Rheology, Colloids Surf. A, submitted
  19. Tadros, Th. F., 1990, Use of viscoelastic measurements in studying interactions in concentrated dispersions, Langmuir 6, 28 https://doi.org/10.1021/la00091a005
  20. Tadros, Th. F., 1994, Fundamental principles of emulsion rheology and their applications, Colloids Surf. A 91, 39 https://doi.org/10.1016/0927-7757(93)02709-N
  21. Taylor, G. I., 1932, The viscosity of a fluid containing small drops of another fluid, Proc. R. Soc. London, Ser. A 138, 41 https://doi.org/10.1098/rspa.1932.0169