Environmental Management of Marine Cage Fish Farms using Numerical Modelling

수치모델을 이용한 해상어류가두리양식장의 환경관리 방안

  • 권정노 (국립수산과학원 환경관리팀) ;
  • 정래홍 (국립수산과학원 양식환경연구소) ;
  • 강양순 (국립수산과학원 양식환경연구소) ;
  • 안경호 (국립수산과학원 양식환경연구소) ;
  • 이원찬 (국립수산과학원 양식환경연구소)
  • Published : 2005.11.01

Abstract

To study the effects of aquaculture activity of marine cage fish farms on marine environment, field researches including hydrography, sediment, benthos and trap experiment at the marine cage fish farms(Site A) around estuaries of Tongyeong city were carried out during June $26\~27$, 2003. A simulation using numerical model-DEPOMOD was conducted to predict the solid deposition from fish cage and to assess the probable solid deposition, and the efficiency of environmental management of marine cage fish farms was studied. The marine cage fish farms cultured mainly common sea bass (Lateolabrax japonicus), red seabream (Pagrus major), striped breakperch (Oplegnathus fasciatus) and black rockfish(Sebastes schlegeli), and total amount of cultured fish of the Site A were 23.1MT. The amount of husbandry fish by unit area(and volume) of the fish cage was $43.0kg\;m^{-2}(6.1kg\;m^{-3})$. The daily mean amounts of food fed by unit biomass and cage area were $30.8g\;kg^{-1}day^{-1},\;1.32kg\;m^{-2}day^{-1},$ respectively, at the Site A. The concentration of ORP of the sediment below the center at the Site A was -334.6 mV and the concentrations of AVS, COD, Carbon and Nitrogen were $0.43mg\;g^{-1}dry,\;17.75mg\;g^{-1}dry,\;10.19mg\;g^{-1}dry\;and\;3.49mg\;g^{-1}dry$, respectively. Capitella capitata was dominant benthic species which occupied $57.8\%$ of total species, and the Infaunal Trophical Index(ITI) was marked below 20 within 20 m distance from the edge of the Site A. The result of trap experiment, the solid deposition from the Site A was $34,485g\;m^{-2}yr^{-1}$ at 0 m from the center of the cage and $18,915g\;m^{-2}yr^{-1}$ at 42 m. From a model simulation, it was estimated that using a model simulation, the proportion of unfed food was $40\%$ at the Site A and the annual total amount of solid deposition was 63,401 accounting for $24.4\%$ of the annual total food fed at the Site A. The area solid deposition settled was estimated to be $8,450m^2$, which was about 16 times of the total area of fish cage at the Site A. And concerning ITI and abundance of benthos, the model predicted that sustainable solid flux at the Site A was below $10,000gm^{-2}yr^{-1}$. The percentage of food wasted was main element of solid deposition at the marine cage fish farms, and for minimizing solid deposition it is necessary to increase the efficiency of the food uptake. Based on the result of the model simulation, if the percentage of food wasted decreases to $10\%$ from the current $40\%$, then the solid deposition could decrease to a half. In addition, it was predicted that if farmers use EP pellets as food fed instead of MP and fish trash, solid deposition could decrease by $57\%$. Also this study proposes that the cage facility ratio of the licensed area be decreased to less than $5\%$ to minimize the sediment pollution.

해상어류가두리양식장의 양식 활동이 해양환경에 미치는 영향을 파악하기 위해 통영주변의 해상어류가두리양식장(Site A)에서 해수유동, 퇴적물, 저서동물 및 트랩 등의 현장조사와 수치모델-DEPOMOD를 이용하여 가두리양식장의 고형물 침강량 예측과 적정 고형물 침강량 산정으로 해상가두리양식장의 환경관리 방안을 제시하였다. 조사대상인 Site A 해상어류가두리양식장의 입식 어종은 common sea bass(Lafeolabrax japonicus), red seabream(Pagrus major), striped breakperch(Oplegnathus fasciatus) 등 4종이고, 입식량은 227,800미 (23.1MT) 였다. 가두리양식장의 입식밀도는 $43.0kg\;m^{-2}(6.1kg\;m^{-3})$ 이고, 사료투여 량은 $30.8g\;kg^{-1}day^{-1}(1.32kg\;m^{-2}day^{-1})$ 이였다. Site A 가두리양식장 중심의 저층 퇴적물의 ORP, AVS, COD, 탄소 및 질소 농도는 각각 -334.6mV, $0.43mg\;g^{-1}dry,\;17.75mg\;g^{-l}dry,\;10.19mg\;g^{-1}dry$$3.49mg\;g^{-1}dry$ 였다. 저서동물은 Capitella capitata가 $57.8\%$로 우점하였고, Infaunal Trophical Index(ITI)는 가두리 가장자리에서 20m 거리 내까지 20 이하로 나타났다. 트랩조사 결과 Site A의 고형물 침강량은 0m에서 $34,485g\;m^{-2}yr^{-1}$, 42m지점에서 $18,915g\;m^{-2}yr^{-1}$침강하는 것으로 나타났다 모델 예측 결과 Site A의 사료 미섭이율은 $40\%$, 연간 고형물 침강량은 63,401 kg으로 연간 사료 급이량의 $24.4\%$이고, 고형물 침강 면적은 $8,450m^2$으로 가두리 시설 면적의 16배인 것으로 예측되었다. ITI와 저서동물의 풍도를 통한 Site A의 지속 가능한 고형물 침강량은 $10,000g\;m^{-2}yr^{-1}$ 이하 인 것으로 예측되었다. 가두리양식장에서 고형물 침강량의 주 요인은 높은 미섭이율이고, 고형물 침강량을 최소화 하기 위해서는 사료 섭이효율을 높여주어야 한다. 모델에 따르면 미섭이율을 $40\%$에서 $10\%$로 줄이면 고형물 침강량이 1/2 수준으로 감소되는 것으로 예측되었고, 습사료, 생사료의 사용 대신에 배합사료(EP)를 사용할 경우 $57\%$정도 침강량이 감소하는 것으로 나타났다. 또한 가두리양식장의 허가면적에 대한 시설 면적비는 $5\%$미만이 적정한 것으로 판단된다.

Keywords

References

  1. 권정노, 2004, 해상어류 가두리양식장의 환경관리 모델링. 부경대학교 박사학위청구논문
  2. 박흥식, 최진우, 이형곤, 2000. 통영인근 가두리 양식장 지역의 저서동물 군집구조. 한국수산학회지. 35(1): 1-8
  3. 심정희, 강영철, 최진우, 1997. 남해안 통영지역 가두리양식장 해수-퇴적물 경계면에서의 chemical fluxes. 바다한국해양학회지, 2: 151-159
  4. 신현출, 최성순, 고철환, 1992. 영일만 다모류 군집의 계절별 공간적 변화. 한국해양학회지, 27(1): 46-54
  5. 임현식, 최진우, 제종길, 이재학, 1992. 진해만 양식장 밀집해역의 저서동물 분포. 한국수산학회지, 25(2): 115-132
  6. 정래홍, 임현식, 김성수, 박종수, 전경암, 이영식, 이재성, 김귀영, 고우진, 2002. 남해안 가두리 양식장 밀집해역의 대형저서동물 군집에 대한 연구. 바다한국해양학회지, 7(4): 235-246
  7. 홍재상, 서인수, 유재원, 정래홍, 1994. 인천 북항 주변해역의 해양저서동물상. 자연보존, 88: 34-50
  8. 홍재상, 정래홍, 서인수, 윤건탁, 최병미, 유재원, 1997. 시화방조제의 건설은 저서동물군집의 시공간 분포에 어떠한 영향을 미쳤는가? 한국수산학회지, 30(3): 882-895
  9. 해양수산부. 2002. 해양환경공정시험방법
  10. 해양수산부. 2003. 2002년도 해양수산주요 통계, 53-54
  11. Bellan, C., 1970. Pollution by sewage in Marseilles. Mar. Pollut. Bull., 1: 59-60 https://doi.org/10.1016/0025-326X(70)90124-4
  12. Black, K.D., 2001. Environmental Impcats of Aquaculture. Shefield Academic Press, 1-31
  13. Bowden, K.F., 1983. Physical oceanography of coastal waters. Ellis Horwood Limited, Chichester, UK, 26-32
  14. Brown, J.R., R.J. Gowen and D.S. McLusky, 1987. The effect of salmon farming on the benthos of a Scottish sea loch. J. Exp. Mar. Bio. Eco., 109: 39-51 https://doi.org/10.1016/0022-0981(87)90184-5
  15. Cromey, C.J., K.D. Black, A. Edwards and I.A. Jack, 1998. Modelling the Deposition and Biological Effects of Organic Carbon from Marine Sewage Discharges. Validation of a Fish Farm Waste Resuspension Model. Estuar. Coast. and Shelf Sci., 47: 295-308 https://doi.org/10.1006/ecss.1998.0353
  16. Cromey, Chris J, T.D. Nickell and K.D. Black, 2000. A model for predicting the effects of solids deposition from mariculture to the benthos. SAMS
  17. Cromey, Chris J., T.D. Nickell, K.D. Black, 2002a. DEPOMOD-modelling the depositon and biological effects of waste solids from marine cage farms. Aquaculture, 214: 211-239 https://doi.org/10.1016/S0044-8486(02)00368-X
  18. Cromey, C.J., T.D. Nickell, K.D. Black, P.G. Provost and C.R. Griffiths, 2002b. Validation of a Fish Farm Waste Resuspension Model by Use of a Particle Tracer Discharged from a Point Source in a Coastal Environment. Estuaries, 25(5): 916-929 https://doi.org/10.1007/BF02691340
  19. Dyer, K.R, 1979. Estuarine hydrology and sedimentation. Cambridge University Press, Cambridge, UK
  20. Findlay, R.H., I. Watling, 1997. Prediction of benthic impact for salmon net-pens based on the balance of benthic oxygen supply and demand. Mar. Ecol. Pro. Ser., 155: 147-157 https://doi.org/10.3354/meps155147
  21. Karakassis, I., E. Hatziyanni, M. Tsapakis, W. Plaiti, 1999. Benthic recovery following cessation of fish farming: a series of successes and catastrophes. Mar. Ecol. Pro. Ser., 184: 205-218 https://doi.org/10.3354/meps184205
  22. Lu, L. and R.S.S. Wu. 1998. Recolonization and sucession of marine macrobenthos in organic-enriched sediment deposited from fish farms. Environmental Pollution. 101: 241-251 https://doi.org/10.1016/S0269-7491(98)00041-4
  23. Pearson, T. H. and R Rosenberg, 1978 Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography Marine Biology Annual Review, 16: 229¬311
  24. Pearson, T.H., J.S. Gray and P.J. Johanneson, 1983. Objective selection of sensetive species indicative of pollution-induced change in benthic communities. 2. Data analyses. Mar. Ecol. Pro. Ser., 12: 237-255 https://doi.org/10.3354/meps012237
  25. Reish, D.J., 1972. The use of marine invertebrates as indicators of varying degrees of marine pollution. In Marine pollution and sea life, edited by Ruivo, M., R A. O. Fishing News (Books) Ltd., London, 404-411
  26. Weston, D.P., 1990. Quantitative examination of macro benthic community changes along an organic enrichment gradient. Mar. Ecol. Pro. Ser., 61: 233-244 https://doi.org/10.3354/meps061233
  27. Westrich, J.T. and R.A. Berner, 1984. The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnol. Oceanogr., 29(2): 236-249 https://doi.org/10.4319/lo.1984.29.2.0236
  28. Word, J.Q., 1979. The Infaunal Trophic Index. In, Annual Report 1978. Coastal Water Research Project, El Segundo, Califonia, USA, 19-39
  29. WRc, 1992. Development of a biotic index for the assessment of the pollution status of marine benthic communities. WRc report no. SR 2995
  30. Wu, R.S.S., 1995. The Environmental Impact of Marine Fish Culture: Towards a sustainable future, 31: 159-166
  31. Wu, R.S.S., K.S. Lam, D.W. MacKay, T.C, Lau and V. Yam, 1994. Impact of marine fish farming on water quality and bottom sediment: a case study of the sub-tropical environment. Mar. Environ. Res., 38: 115-145 https://doi.org/10.1016/0141-1136(94)90004-3