DOI QR코드

DOI QR Code

Removal Characteristics of Styrene Vapor in the Biofilter Packed with Loess/Polyurethane Composite Media

황토/폴리우레탄 복합담체를 충전한 Biofilter에서 기상 Styrene의 제거특성

  • Kang Kyung-Ho (Division of Civil & Environmental Engineering, Cheju National University) ;
  • Kam Sang-Kyu (Division of Civil & Environmental Engineering, Cheju National University) ;
  • Lee Taek-Kwan (Hungsan Environmental Construction Company) ;
  • Lim Sang-Bin (Department of Food Bioengineering, Cheju National University) ;
  • Lee Min-Gyu (Division of Applied Chemical Engineering, Pukyong National University)
  • 강경호 (제주대학교 토목환경공학) ;
  • 감상규 (제주대학교 토목환경공학) ;
  • 이택관 (흥산환경건설(주)) ;
  • 임상빈 (제주대학교 식품생명공학과) ;
  • 이민규 (부경대학교 응용화학공학부)
  • Published : 2005.11.01

Abstract

The treatment of styrene vapor was carried out using the biofilter packed with loess/polyurethane composite during continuous operation of 74 days. The microorganisms were adapted within 2-3 days under the experimental conditions of inlet concentration and empty bed contact time (EBCT). At 200 sec of EBCT, the removal efficiency of styrene was 100\% with 200 ppmv of inlet concentration, while $92\%$ with 400 ppmv of inlet concentration. The biofilter showed the stable removal efficiencies of over $74\%$ under the EBCT range from 300 to 75 sec at the 150 ppmv of inlet styrene concentration. The maximum capacity of styrene removal for the biofilter packed with loess/polyurethane was $29g/m^3/hr$. During continuous operation of 74 days, pH of the drain water changed slightly and the pressure drop through the biofilter column was below $45\;mmH_2O/m$.

Keywords

References

  1. Kim, I. H. and H. S. Choi, 2002, Engineering analysis of biofilter, Kor. J. Biotechnol. Bioeng., 17(2), 115-120
  2. Makram, T. S., X. Zhu and B. C. Paik, 1996, Characteristics of trickle bed biofilter for treatment of VOC containing diethyl ether in waste gases, J. Kor. Soc. Environ. Eng., 18(12), 1583-1596
  3. Smith, M. R., 1990, The biodegradation of aromatic hydrocarbons by bacteria, Biodegradation, 1, 191-206 https://doi.org/10.1007/BF00058836
  4. Zilli, M. and A. Converti, 1999, Biofilters, In Flickinger, M. C. and S. W. Drew (eds.), The Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation, Wiley, New York, pp. 305-319
  5. Sollenberg, J., R. Bjurstrom, K. Wrangskog and O. Vesterberg, 1988, Biological exposure limits estimated from relations between occupational styrene exposure during a workweek and excretion of mandelic and phenylglyoxylic acids in urine, Int. Arch. Occup. Environ. Health, 60, 365-370 https://doi.org/10.1007/BF00405672
  6. 이택관, 이민규, 감상규, 허철구, 2004, 제주도 양돈장 분뇨의 액비화에 따른 유발 악취성분의 효율적인 처리기술개발, 제주지역환경기술개발센터 2004년도 연차보고서(04-4-40-44), 65pp
  7. Warhurst, A. M. and C. A. Fewson, 1994, Microbial metabolism and biotransformations of styrene, J. Appl. Bacteriol., 77, 597-606 https://doi.org/10.1111/j.1365-2672.1994.tb02807.x
  8. Ragule, N., 1974, Embryotoxic action of styrene, Gigiena i Sanitarii, 11, 85-86
  9. Murray, F. J., J. A. John, M. F. Balmer and B. A. Schwetz, 1978, Teratologic evaluation of styrene given to rats and rabbits by inhalation or by gavage, Toxicology, 11, 335-343 https://doi.org/10.1016/S0300-483X(78)92039-5
  10. Zilli, M., E. Palazzi, L. Sene, A. Converti and M. D. Borghi, 2001, Toluene and styrene removal from air in biofilters, Process Biochemistry, 37, 423-429 https://doi.org/10.1016/S0032-9592(01)00228-X
  11. Yoon, I. K. and C. H. Park, 2002, Effects of gas flow rate, inlet concentration and temperature on biofiltration of volatile organic compounds in a peat-packed biofilter, J. Biosci. Bioeng., 93(2), 165-169 https://doi.org/10.1263/jbb.93.165
  12. Lee, M. G., P. J. Jun, D. H. Lee and S. K. Kam, 2003, Removal of toluene vapor in the biofilter packed with activated carbon/polyurethane composite media, J. Korean Ind. Eng. Chem., 14(7), 864-868
  13. Swanson, W. J. and C. L. Raymond, 1997, Biofiltration: fundamentals, design and operations principles, J. Environ. Eng., 54, 538-546
  14. Waren, J. S. and C. L. Raymond, 1997, Biofiltration: fundamentals, design and operations principles and applications, J. Environ. Eng., 123(6), 538-546 https://doi.org/10.1061/(ASCE)0733-9372(1997)123:6(538)
  15. Martin, H. A., S. Keuning and D. B. Janssen, 1998, Handbook on Biodrgradation and Biological Treatment of Hazardous Organic Compounds (2nd ed.), Academic Press, Dordrecht, pp. 191-257
  16. Shinabe, K., S. Oketani, T. Oehi, S. Kanchanatawee and M. Matsumura, 2000, Characteristics of hydrogen sulfide removal in a carrier-packed biological deodorization system, Biochem. Eng. J., 5, 209-217 https://doi.org/10.1016/S1369-703X(00)00061-9
  17. Kim, I. K., S. H. Seo and C. Y. Kang, 2000, General properties and ferric oxide content of hwangtoh(yellow ochre), J. Kor. Pharm. Sci., 30(3), 219-222
  18. Ergas, S. J., E. D. Schroeder and D. P. Chang, 1992, Biodegradation technology for volatile organic compound removal from air stream: Phase 1. Performance verification, California Air Resources Board, Final Report under Contract No. AO, pp. 32-137
  19. Moe, W. M. and R. L. Irvine, 2000, Polyurethane foam medium for biofiltration. 1. Operation and performance, J. Environ. Eng., 126(9), 815-825 https://doi.org/10.1061/(ASCE)0733-9372(2000)126:9(815)
  20. Zhou, Q., Y. L. Huang, D. H. Tseng, H. Shim and S. T. Yang, 1998, A trickling fibrous-bed bioreactor for biofiltration of benzene in air, J. Chem. Technol. Biotechnol., 73, 359-368 https://doi.org/10.1002/(SICI)1097-4660(199812)73:4<359::AID-JCTB970>3.0.CO;2-V
  21. Maria, E. A., P. Fermin, A. Richard and R. Sergio, Microbiological and kinetic aspects of a biofilter for the removal of toluene from waste gases, Biotechnol. and Bioeng., 63(2), 175-184 https://doi.org/10.1002/(SICI)1097-0290(19990420)63:2<175::AID-BIT6>3.0.CO;2-G
  22. Kiared, K., B. Fundenberger, R. Brzezinski, G. Viel and M. Heitz, Biofiltration of air polluted with toluene under steady-state conditions; experimental observations, Ind. Eng. Chem. Res. 36(4), 4719-4725 https://doi.org/10.1021/ie9701478
  23. Jorio, H., L. Bibeau, G. Vie and M. Heitz, 2000, Effects of gas flow rate and inlet concentration on xylene vapors biofiltration performance, Chem. Eng. J., 76, 209-221 https://doi.org/10.1016/S1385-8947(99)00160-6
  24. Abumaizar, R., W. Kocher and E. H. Smith, 1998, Biofiltration of BTEX contaminated air streams using compost-activated carbon filter media, J. Hazardous Materials, 60, 111-126 https://doi.org/10.1016/S0304-3894(97)00046-0
  25. Shareefdeen, Z., B. Baltzis, Y. S. Oh and R. Bartha, 1993, Biofiltration of methanol vapor, Biotechnol. Bioeng., 41, 512-524 https://doi.org/10.1002/bit.260410503
  26. Ottengraf, S. P. P., J. J. P. Meesters, A. H. C. van den Oever and H. R. Rozema, 1986, Biological elimination of volatile xenobiotic compounds in biofilters, Bioproc. Eng., 1, 61-69 https://doi.org/10.1007/BF00387497
  27. Kam, S. K., K. H. Kang, J. K. Lim and M. G. Lee, 2004, Removal characteristics of $H_{2}S$ in the biofilter packed with activated carbon/polyurethane composite media, J. Environ. Sci., 13(1), 47-53
  28. Warren, J. S. and C. L. Raymond, 1997, Biofiltration: Fundamentals, design and operations principles, and applications, J. Environ. Eng., 123(6), 538-546 https://doi.org/10.1061/(ASCE)0733-9372(1997)123:6(538)
  29. Arnold, M., A. Reittu, A. von Wright, P. J. Martikainen and M. I. Suihko, 1997, Bacterial degradation of styrene in waste gases using a peat filter, Appl. Microbiol. Biotechnol., 48, 738-744 https://doi.org/10.1007/s002530051126
  30. Mueller, J. C., 1988, Biofiltration of gases-a mature technology for control of a wide range of air pollutants, British Columbia Res. Corp., Vancouver, B. C., Canada, pp. 1-22