Reinforcement and Arching Effect of Geogrid-reinforced and Pile-supported Embankments

지오그리드와 말뚝으로 보강된 성토지반의 보강 및 아칭효과 연구

  • Oh Young-In (Agricultural Eng. Div., Rural Research Institute. KRC.) ;
  • Shin Eun-Chul (Dept. of Civil & Environmental System Eng., Univ. of Incheon)
  • 오영인 (한국농촌공사 농어촌연구원 농공기술연구실) ;
  • 신은철 (인천대학교 토목환경시스템공학과)
  • Published : 2005.12.01

Abstract

Geosynthetic-reinforced and pile-supported embankments have been increasingly used and researched around the world. The inclusion of one or multiple geosynthetic reinforcements over the pile is intended to enhance the efficiency of load transfer from soft ground to piles, to reduce total and differential settlement and increase global or local stability. In this paper, the reinforcement effectiveness and arching effect of the geogrid-reinforced and pile-supported embankments have been studied in terms of field model tests and numerical analysis with varying the space between piles and reinforcement. 2-dimensional numerical analysis has been conducted using the FLAC (Fast Lagrangian Analysis of Continua) program. And load transfer mechanisms between soil-piles-geogrid were investigated. The mechanisms of load transfer can be considered as a combination of embankment soil arching, tension geogrid, and stress concentration due to the stiffness difference between pile and soft ground. Based on the field model test and numerical analysis results, it was found that the geosynthetic reinforcement slightly interferes with soil arching, and helps reduce differential settlement of the soft ground. Also. at the D/b=3 (D: spacing of pile cap, b: diameter of pile), the total settlement is reduced by about $40\%$ compared to that without reinforcement. For $D/b{\ge}6$, the effectiveness of geogrid reinforcement in reducing settlement is negligible.

토목섬유로 보강된 성토지지말뚝공법은 기존 성토지지말뚝공법의 말뚝간격처리 및 말뚝캡 면적문제를 개선하며 효과적으로 지지력을 보강하고 특히 전체침하 및 부등침하 감소시킬 수 있는 공법으로 최근 활용이 증가하고 있다. 본 연구에서는 지오그리드로 보강된 성토지지말뚝공법의 보강 및 아칭효과에 대하여 연구하기 위하여 지오그리드 보강유무, 말뚝간격변화에 따른 현장모형실험과 2차원 수치해석을 수행하였다. 수치해석적 연구는 범용 유한차분해석 프로그램인 FLAC 2-D를 사용하였으며, 지반-말뚝-지오그리드의 하중전달 메카니즘에 대하며 분석하였다. 지오그리드로 보강된 성토지지말뚝의 하중전달은 성토제체 내의 아칭효과, 지오그리드의 인장, 말뚝으로의 응력전이 등의 과정이 복합적으로 발생한다. 현장모형실험 및 수치해석연구 결과에 따르면 지오그리드의 보강에 따라 아칭효과는 미소하게 감소하지만, 부등침하는 급격히 감소하는 것으로 나타났다. 또한, D/b=3(D: 말뚝캡 간격, b: 말뚝직경)일때 무보강 지반에 비하여 $40\%$의 침하가 감소하며, D/b=6이상일 경우는 지오그리드에 의한 하중전이가 발생하지 않아 보강효과가 거의 없는 것으로 나타났다.

Keywords

References

  1. 홍원표, 윤중만, 서문성 (1999), '말뚝으로 지지된 성토지반의 파괴형태', 한국지반공학회 논문집, 제 15권, 4호, pp.207-220
  2. 홍원표, 이광우 (2002), '성토지지말뚝의 연직하중 분담효과에 관한연구', 한국지반공학회 논문집, 제 18권, 4호, pp.285-294
  3. Collin, J. G. (2003), 'NHI Ground Improvement Manual- Technical Summary #10: Column Supported Embankments'
  4. Duncan, J. M. and Chang, C. Y. (1970), 'Nonlinear analysis of stress and strain in soil', Journal of Soil Mechanics and Foundation Division, Vol.96(5), pp.1629-1652
  5. Han, J. (1999), Design and construction of embankments on geosynthetic reinforced platforms supported by piles, Proceedings, 1999 ASCE/PaDOT Geotechnical Seminar, Hershey
  6. Han, J. and Gabr, M. A. (2002), 'Numerical analysis of geosynthetics-reinforced and pile supported earth platforms over soft soil', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.128(1), pp.44-53 https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(44)
  7. Hartlen, J. and Wolski, W. (1996), 'Embankments on Organic Soils', Elsevier, pp.424
  8. Jenner, C.G., Austin, R.A., and Buckland, D. (1998), 'Embankment Support Over Piles Using Geogrids', Sixth International Conference on Geosynthetics, pp.763-766
  9. Maddison, J.D., Jones, D.B., Bell, A.L., and Jenner, C.G. (1998), 'Design and performance of an embankment supported using low strength geogrids and vibro concrete column', Sixth International Conference on Geosynthetics, pp.325-332
  10. Magnan, J. (1994), 'Methods to reduce the settlement of embankments on soil clay : a review, Foundations and Embankments Deformations', ASCE, Geotechnical Special Publication, No.40, pp.77-90
  11. McNulty, J. W. (1965), 'An Experimental Study of Arching in Sand', Rep. No. I-674, U.S. Army Engineer Waterways Experiment Station, Corps. of Engineer, Vicksburg. Miss., 170
  12. Rathmayer, H. (1975), 'Pile embankment supported by single pile caps', Proceedings of Conference on Soil Mechanics and Foundation Engieering, Istanbul, pp.283-290
  13. Reid, W. M. and Buchanan, N. W. (1984), 'Bridge approach support piling', Piling and Ground Treatment, Thomas Telford Ltd., London, pp.267-274
  14. Rogbeek, Y., Gustavsson, S., Soedergren, I., and Lindquist, D. (1998), 'Reinforced Piled Embankments in Sweden-Design Aspects', 1998 Sixth International Conference on Geosynthetics, pp.755-762
  15. Russell, D., and Pierpoint, N. (1997), 'An Assessment of Design Methods for Piled Embankment', Ground Engineering, November, 30(11), pp.39-44
  16. Tensar Corporation. (1989), 'Design of Tensar Geogrid Reinforcement to Support Landfill Lining and Cover System', Tensar Tech. Note, TTN: WM3, 24
  17. Terzaghi, K. (1936), 'Stress distribution in dry and saturated sand above a yielding trap door', Proceedings of 1st International Conference on Soil Mechanics and Foundation Engineering, Harvard Univ., Cambridge, pp.337-311
  18. Terzaghi, K. (1943), 'Theoretical Soil Mechanics', Wiley, New York, pp.62-75
  19. Tsukada, Y., Isoda, T., and Yamanouchi, T. (1993), 'Geogrid subgrade reinforcement and deep foundation improvement', Proceedings of Geosynthetics Case Histories, International Society for Soil Mechanics and Foundation Engineering, Committee TC9, Yono City, Japan, pp.158-159