DOI QR코드

DOI QR Code

Preparation of Thin Film Electrolyte for Solid Oxide Fuel Cell by Sol-Gel Method and Its Gas Permeability

졸-겔법을 이용한 고체산화물연료전지의 전해질 박막 제조 및 가스 투과도

  • Son, Hui-Jeong (Hydrogen and Fuel Cell Research Department, Korea Institute of Energy Research) ;
  • Lee, Hye-Jong (Hydrogen and Fuel Cell Research Department, Korea Institute of Energy Research) ;
  • Lim, Tak-Hyoung (Hydrogen and Fuel Cell Research Department, Korea Institute of Energy Research) ;
  • Song, Rak-Hyun (Hydrogen and Fuel Cell Research Department, Korea Institute of Energy Research) ;
  • Peck, Dong-Hyun (Hydrogen and Fuel Cell Research Department, Korea Institute of Energy Research) ;
  • Shin, Dong-Ryul (Hydrogen and Fuel Cell Research Department, Korea Institute of Energy Research) ;
  • Hyun, Sang-Hoon (Department of Ceramic Engineering, Yonsei University) ;
  • Kilner, John (Department of Materials, Imperial College London)
  • 손희정 (한국에너지기술연구원 수소연료전지연구부 신연료전지연구센터) ;
  • 이혜종 (한국에너지기술연구원 수소연료전지연구부 신연료전지연구센터) ;
  • 임탁형 (한국에너지기술연구원 수소연료전지연구부 신연료전지연구센터) ;
  • 송락현 (한국에너지기술연구원 수소연료전지연구부 신연료전지연구센터) ;
  • 백동현 (한국에너지기술연구원 수소연료전지연구부 신연료전지연구센터) ;
  • 신동열 (한국에너지기술연구원 수소연료전지연구부 신연료전지연구센터) ;
  • 현상훈 (연세대학교 세라믹공학과) ;
  • Published : 2005.12.01

Abstract

In this study, thin electrolyte layer was prepared by 8YSZ ($8mol\%$ Yttria-Stabilized Zirconia) slurry dip and sol coating onto the porous anode support in order to reduce ohmic resistance. 8YSZ polymeric sol was prepared from inorganic salt of nitrate and XRF results of xerogel powder exhibited similar results $(99.2\pm1wt\%)$ compared with standard sample (TZ-8YS, Tosoh Co.). The dense and thin YSZ film with $1{\mu}m$ thickness was synthesized by coating of 0.7M YSZ sol followed by heat-treatment at $600^{\circ}C$ for 1 h. Thin film electrolyte sintered at $1400^{\circ}C$ showed no gas leakage at the differential pressure condition of 3 atm.

Keywords

References

  1. N. Q. Minh and T. Takahashi, 'Science and Technology of Ceramic Fuel Cells,' pp. 69, Elsevier Science, Amsterdam, The Nertherlands (1995)
  2. R. T. Dirstine, R. N. Blumenthal, and T. F. Kuech, 'Ionic Conductivity of Calcia, Yttria, and Rare Earth-Doped Cerium Dioxide,' J. Electrochem. Soc., 126 [2] 264-69 (1979) https://doi.org/10.1149/1.2129018
  3. P. Charpentier, P. Fragnaud, D. M. Schleich, and E. Gehain, 'Preparation of Thin Film SOFCs Working at Reduced Temperature,' Solid State Ionics, 135 [1/4] 373-80 (2000) https://doi.org/10.1016/S0167-2738(00)00472-0
  4. S. H. Hyun, S. G. Kim, and W. S. Jang, 'Synthesis of Electrolyte Films for Low-Temperature Solid Oxide Fuel Cells by Sol-Gel Coating and Their Characteristics(in Korean),' J. Kor. Ceram. Soc., 36 [4] 391-402 (1999)
  5. S. H. Lee, 'Fabrications and Applications of Nano Ceramic Particles by Sol-Gel Method,' Prospectives of Ind. Chem., 6 [6] 27-37 (2003)
  6. M. Z. C. Hu, E. A. Payzant, and C. H. Byers, 'Sol-Gel and Ultrafine Particle Formation via Dielectric Tuning of Inorganic Salt-Alcohol-Water Solutions,' J. Colloid and Int. Sci., 222 [I] 20-36 (2000) https://doi.org/10.1006/jcis.1999.6610
  7. A. E. Gash, T. M. Tillotson, J. H. Satcher Jr., L. W. Hrubesh, and R. L. Simpson, 'New Sol-Gel Synthetic Route to Transition and Main-Group Metal Oxide Aerogels Using Inorganic Salt Precursors,' J. Non-Crystalline Solids, 285 [113] 22-8 (2001) https://doi.org/10.1016/S0022-3093(01)00427-6
  8. F. Tietz, H. P. Buchkremer, and D. Stover, 'Components Manufacturing for Solid Oxide Fuel Cells,' Solid State Ioincs, 152-153 378-81 (2002)
  9. J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, and L. J. Gaukler, 'Fabrication of Thin Electrolytes for Secondgeneration Solid Oxide Fuel Cells,' Solid State Ionics, 131 79-96 (2000) https://doi.org/10.1016/S0167-2738(00)00624-X
  10. S. Souza, S. J. Visco, and L. C. Jonghe, 'Thin-Film Solid Oxide Fuel Cell with High Performance at Low-Temperature,' Solid State Ionics, 98 [1/2] 57-61 (1997) https://doi.org/10.1016/S0167-2738(96)00525-5
  11. R. H. Song and K. S. Song, 'Performance Characteristics of Anode-Supported Tubular Solid Oxide Fuel Cell,' Kor. J. Mater. Res., 14 [5] 368-73 (2004) https://doi.org/10.3740/MRSK.2004.14.5.368
  12. M. Li and G. L. Messing, 'Ceramic Transactions,' pp. 129, in Ceramic Powder Science III, Vol. 12, Ed. by G. L. Messing, S. I. Hirano, and H. Hausner, The American Ceramic Society, Westerville, OH, 1990
  13. K. Mehta, R. Xu, and A. V. Virkar, 'Two-Layer Fuel Cell Electrolyte Structure by Sol-Gel Processing,' J. Sol-Gel Sci. and Tech., 11 [2] 203 (1998) https://doi.org/10.1023/A:1008605816691
  14. S. G. Kim, S. W. Nam, S. P. Yoon, S. H. Hyun, J. H. Han, T. H. Lim, and S. A. Hong, 'Sol-Gel Processing of Yttria-stabilized Zirconia Films Derived from the Zirconium N-Butoxide-Acetic Acid-Nitric Acid- Water-Isopropanol System,' J. Mater. Sci., 39 [8] 2683-88 (2004) https://doi.org/10.1023/B:JMSC.0000021442.30015.3c
  15. W. Bao, Q. Chang, R. Van, and G. Meng, 'The Novel Combination of Electrostatic Powder Coating with Suspension Coaying for Fabrication the Dense YSZ Thin Film on Porous Anode Substrate,' J. Membrane Sci., 252 175-81 (2005) https://doi.org/10.1016/j.memsci.2004.12.009
  16. T. Okubo and H. Nagamoto, 'Low-Temperature Preparation of Nanostructured Zirconia and YSZ by Sol-Gel Processing,' J. Mater. Sci., 30 749-57 (1995) https://doi.org/10.1007/BF00356338