Assessment of River Water Quality Contaminated by Abandoned Mine and Hot-Spring using Principal Component Analysis

주성분분석기법을 적용한 온천 및 폐광산 오염원에 대한 하천수질평가

  • Lee Jae-Young (Department of Civil and Environmental Engineering, University of Central Florida) ;
  • Sato Yuko (Department of Environmental Engineering, Hokkaido University) ;
  • Kang Meea (Department of Environmental Engineering, Andong National University) ;
  • Jeong Gyo-Cheol (Department of Earth and Environmental Sciences, Andong National University)
  • Published : 2005.12.01

Abstract

S City depends on the T River as source water for water supply. Arsenic and boron from the hot-spring waste-water discharged from the hot-spring spa resort and emerging from the fractures of bedrock of the river have been prevalent contaminant of the T River water. This research was conducted to propose the simple and quick surrogate parameter for water quality management easily. And through making hexa-diagram of principal ions in the water samples, existing state of the water and influence of the human activity or geological origin can be figured out. As a results of characteristics of the T River water quality using principal component analysis, the contributory percentages of the 1st, 2nd and 3rd principal components were $40.80\%,\;21.40\%\;and\;11.31\%$, respectively. Therefore it was clarified that the quality of the T River water could be explained by these three principal components. Concentration of the chloride ion, which is one of the characteristics of the hot-spring water, was well correlated to both arsenic and boron concentrations. Hence concentrations of the arsenic and boron in the raw water of the water reatment plant can be predicted by the measurement of concentration of the chloride ion.

일본의 5시는 상수원수로서 T하천을 이용하고 있으며, T하천의 수질은 비소와 보론 등의 폐광산 및 온천유래의 오염원에 의한 수질특성을 갖고 있다. 이 연구는 T하천의 수질특성 에 대하여 주성분분석 기법을 적용하여 분석하여 보다 용이한 하천관리 인자를 도출하고자 하였다. 이 연구에서 제시한 hexa-diagram을 이용하면, 각 수질측정 지점에서의 주요 오염원을 쉽게 파악할 수 있어 하천관리에 유효한 지표로 사용될 수 있다. 또한 주성분분석을 적용하여 하천수질의 특성을 조사한 결과, 1st, 2nd, 3rd 성분들의 각 고유값은 5.30, 2.78 및 1.47로 나타났으며, 1st, 2nd, 3rd 성분들의 기여도는 각각 $40.80\%,\;21.40\%\;및\;11.31\%$로 나타났다. 그러므로 이들 주성분을 이용하면, T하천의 수질특성을 보다 정확하고 신속하게 평가할 수 있다고 판단된다. 온천수의 주요성분으로 나타나는 염소이 온은 정수처리 공정에서 제거하기가 곤란한 비소와 보론의 관계에서 매우 높은 상관관계를 나타내어 염소이온농도를 이용한 하천관리는 비소와 보론 분석에 드는 시간적, 경제적인 부하를 저감하여 보다 신속한 처리가 가능하도록 하므로 하천수질관리의 효율을 개선할 것으로 기대한다.

Keywords

References

  1. 강미아, 2003, 지하수에 의한 비소노출과 건강 위해도 저감에 관한 방글라데시의 사례연구, 국립환경연구원-환경의 날 기념 국제세미나, pp. 1-23
  2. 강미아, 김광태, 2005, 비소오염의 하천수를 상수원수로 하는 정수장에서 비소관리, 한국물환경확회 공동추계학술발표회, pp. 357-361
  3. 황정서, 최상일, 장민, 2004, 폐광산주변 오염토양세척 유출수의 비소처리, 한국물환경학회공동춘계학술발표회, pp. 855-858
  4. Buck, S.F., 1960, A Method of Estimation of Missing Values in Multivariate Data Suitable for Use with an Electronoc Computer, The Journal of the Royal Statistics Society, 22(2), pp. 302-306
  5. Chakraborty, A. K. and Salm K. C., 1987, Arsenical Dermatiosis from TubewellWater in West Bengal, Indian J med Res, 85, pp. 326-34
  6. Kang M., Kawasaki M., Tamada S., Kamei T., Magara Y., 2000, Effect of arsenic and antimony using reverse osmosis membranes, Desalination, Issues 1-3, pp.293-298 https://doi.org/10.1016/S0011-9164(00)90027-4
  7. Knag M., 2001, Removal of Hazardous Antimony and Arsenic using Low Pressure Nanofiltation Membranes, Doctoral Thesis, Hokkado University, Japan
  8. Kang M., Chen H., Sato Y., Kamei T., Magara Y., 2003, Rapid and economical indicator for evaluating arsenic removal with minimum aluminum residual during coagulation process, Water Research, 37(19), pp. 4599-4604 https://doi.org/10.1016/S0043-1354(03)00426-3
  9. Mahloch, J.L., 1974, Multivariate Techniques for Water Quality Analysis, J. Environ. Eng. Div. Amer. Soc. Civil Eng., 100, No. EE5, pp.1119-1132
  10. Mazlum, N., 1994, Multivariate Analysis of Water Quality Data, Master of Science Thesis, Dpluz Eylul University, Graduate School of Natural Applied Sciences, Bornova, Izmir
  11. Nazire Mazlum, Adem Ozer, Suleyman Mazlum, 1999, Interpretation of Water Quality Data by principal Components Analysis, J. of Engineering and Environmental Science, 23, pp. 19-26
  12. Pieruz G., Grassia P., Dryfe R., 2004, Boron removal from produced water by facilitated ion transfer, Desalination, 167(15), pp. 417-422 https://doi.org/10.1016/j.desal.2004.06.156
  13. Sato Y., Kang M., Kamei T., Magara Y., 2002, Performance of nanofiltration for arsenic removal, Water Research, 36(13), pp. 3371-3337 https://doi.org/10.1016/S0043-1354(02)00037-4
  14. Smith, A. H., 1992, Cancer Risks from Arsenic in Drinking Water,Environmental Health Perspectives, 97, pp. 259-267 https://doi.org/10.2307/3431362
  15. USEPA, 2000, Technologies and Costs for Removal of Arsenic from Drinking Water, EPA 815-R-00-Q28
  16. WHO Working Group Meeting on Chemical Substances in Drinking Water, 1997, WHO, Geneva, April 22-26
  17. www.cynews.co.kr /news, Report, July 18 (2005)