Production of Saccharogenic and Dextrinogenic Amylases by Rhizomucor pusillus A 13.36

  • Silva Tony M. (Laboratorio de Bioquimica e Mierobiologia, IBILCE-Instituto de Instituto de Biociencias, Letras e Ciencias Exatas, UNESP- Universidade Estadual Paulista.) ;
  • Attili-Angelis Derlene (Departamento de Bioquimica e Microbiologia, Instituto de Biociencias, UNESP-Universidade EstadualPaulista) ;
  • Carvalho Ana Flavia Azevedo (Laboratorio de Bioquimica e Mierobiologia, IBILCE-Instituto de Instituto de Biociencias, Letras e Ciencias Exatas, UNESP- Universidade Estadual Paulista.) ;
  • Silva Roberto Da (Laboratorio de Bioquimica e Mierobiologia, IBILCE-Instituto de Instituto de Biociencias, Letras e Ciencias Exatas, UNESP- Universidade Estadual Paulista.) ;
  • Boscolo Mauricio (Laboratorio de Fisico-Quimica, IBILCE-Instituto de Instituto de Biociencias, Letras e Ciencias Exatas, UNESP-Universidade Estadual Paulista.) ;
  • Gomes Eleni (Laboratorio de Bioquimica e Mierobiologia, IBILCE-Instituto de Instituto de Biociencias, Letras e Ciencias Exatas, UNESP- Universidade Estadual Paulista.)
  • Published : 2005.12.01

Abstract

A newly-isolated thermophilic strain of the zygomycete fungus Rhizomucor pusillus 13.36 produced highly active dextrinogenic and saccharogenic enzymes. Cassava pulp was a good alternative substrate for amylase production. Dextrinogenic and saccharogenic amylases exhibited optimum activities at a pH of 4.0-4.5 and 5.0 respectively and at a temperature of $75^{\circ}C$. The enzymes were highly thermostable, with no detectable loss of saccharogenic or dextrinogenic activity after 1 hand 6 h at $60^{\circ}C$, respectively. The saccharogenic activity was inhibited by $Ca^{2+}$ while the dextrinogenic was indifferent to this ion. Both activities were inhibited by $Fe^{2+}\;and\;Cu^{2+}$ Hydrolysis of soluble starch by the crude enzyme yielded $66\%$ glucose, $19.5\%$ maltose, $7.7\%$ maltotriose and $6.6\%$ oligosaccharides.

Keywords

References

  1. Aberle, T.H., W. Burchard, W. Vorwerg, and S. Radosta 1994. Conformation, contributions of amylase and amylopectin to the structural properties of starches from various sources. Starke 46, 329-335 https://doi.org/10.1002/star.19940460903
  2. Adams, P.R. 1994. Extracellular amylase activity of Rhizomucor pusillus and Humicola lanuginosus at initial stages of growth. Mycology 128, 139-141
  3. Adams, P.R. and J.J. Deploy. 1978. Enzymes produced by thermophilic fungi. Mycology 70, 906-910 https://doi.org/10.2307/3759380
  4. Aquino, A.C., J.A. Jorge, H.F. Terenzi, and M.L. Polizeli. 2003. Studies on thermostable alpha-amylase from thermophilic fungus Scytalidium thermophilum. Appl. Microbiol. Biotechnol. 61, 323-328 https://doi.org/10.1007/s00253-003-1290-y
  5. Arnesen, S., S.H. Ericksen, J. Olsen, and B. Jensen. 1998. Increased production of $\alpha$-amylase from Thermomyces lanuginosus by addition of Tween 80. Enzyme. Microbiol. Technol. 23, 249-252 https://doi.org/10.1016/S0141-0229(98)00040-4
  6. Bergmeyer, H.U., E. Bernt, F. Schimidt, and H. Stork. 1974. D-glucose determination with glucose oxidase and isomerase, p. 1205-1212. In H.V. Bergmeyer (ed.), Methods of Enzymatic Analysis, vol. 3. Weinheim:Verlag-Chimie, ISBN 3-527-35530-3
  7. Brown, S.H. and R.M. Kelly. 1993. Characterization of amylolytic enzymes, having both $\alpha$-1,4 and $\alpha$-1,6 hydrolytic activity from thermophilic archaea Pyrococcus furiosus and Thermococcus litoralis. Appl. Environ. Microbiol. 59, 2614-2621
  8. Brumm, P.J. 1998. Enzymatic production of dextrose. Cereal Food World. 40, 804-807
  9. Campos, L. and C.R. Felix. 1995. Purification and characterization of a glucoamylase from Humicola grisea. Appl. Environ. Microbiol. 61, 2436-2438
  10. Cereia, M., H.F. Terenzi, J.A. Jorge, L.J. Greene, J. Rosa, and M.L. Polizeli. 2000. Glucoamylase activity from the thermophilic fungus Scytalidium thermophilum. J. Basic Microbiol. 40, 83-92 https://doi.org/10.1002/(SICI)1521-4028(200005)40:2<83::AID-JOBM83>3.0.CO;2-6
  11. Glucoamylase activity from the thermophilic fungus Scytalidium thermophilum. J. Basic Microbiol. 40, 83-92 https://doi.org/10.1002/(SICI)1521-4028(200005)40:2<83::AID-JOBM83>3.0.CO;2-6
  12. Cruz, R., L. Souza, E.H.E. Hoffmann, M.Z. Bellini, V.A. Cruz, and C.R. Vieira. 1997. Relationship between carbon source, production and pattern action of $\alpha$-amylase from Rhizopus sp. Rev. Microbiol. 28, 101-105
  13. Friendrich, J., A. Cimerman, and A. Perdih. 1987. Mixed culture of Aspergillus awamori and Trichoderma reesei for bioconversion of apple distillery waste. Appl. Microbiol. Biotechnol. 26, 299-303 https://doi.org/10.1007/BF00286328
  14. Gupta, R., P. Gigras, H. Mohapatra, V.K. Goswami, and B. Chauhan. 2003. Microbial $\alpha$-amylase: a biotechnological perspective. Process Biochem. 38, 1599-1616 https://doi.org/10.1016/S0032-9592(03)00053-0
  15. Hoover, R. 2001. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carboh. Polym. 45, 253-267 https://doi.org/10.1016/S0144-8617(00)00260-5
  16. Hsiu, J., E.H. Fischer, and E.A. Stein. 1964. Alpha-amylase as calcium- metalloenzymes. II. calcium and catalytic activity. Biochemistry 3, 61-66 https://doi.org/10.1021/bi00889a011
  17. Jamuna, R. and S.V. Ramakrishna. 1989. SCP production and removal of organic acid from cassava starch industry by yeasts. J. Fermen. Bioeng. 67, 126-131 https://doi.org/10.1016/0922-338X(89)90193-1
  18. Jayachandran, S. and R. Ramabadran. 1970. Production of amylase by Thermoascus aurantiacus. Ind. J. Exp. Biol. 8, 344-345
  19. Jin, B., H.J. van Leeuwen, B. Patel, H.W. Doelle, and Q. Yu. 1999. Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater. Process Biochem. 34, 59-65 https://doi.org/10.1016/S0032-9592(98)00069-7
  20. Joyet, P., N. Declerck, and C. Gaillardin. 1992. Hyperthermostable variants of a highly thermostable alpha-amylase. Biotechnol. 10, 1579-1583 https://doi.org/10.1038/nbt1292-1579
  21. Kirk, P.M., P.F., Cannon, J.C. David, and J.A. Stalpers. 2001. Ainsworth and Bisby's Dicitonary of the Fungi, 9th ed. CAB International, Wallingford, U.S.A
  22. Koch, R., K. Spreinat, K. Lemke, and G. Antranikian. 1991. Purification and properties of a hyperthermoactive $\alpha$-amylase from a newly isolated Pyrococcus furiosus. Arch. Microbiol. 155, 572-578 https://doi.org/10.1007/BF00245352
  23. Koch, R., P. Zablowski, A. Spreinat, and G. Antranikian. 1990. Extremely thermostable amylolytic enzyme from the archaebacterium Pyrococcus furiosus. FEMS Microbiol. Lett. 71, 21-26 https://doi.org/10.1111/j.1574-6968.1990.tb03792.x
  24. Laderman, K.A., B.R. Davies, H.C. Krutzsch, M.S. Lewis, Y.V. Griko, P.L. Privalov, and C.B. Anfinsen. 1993. The purification and characterization of an extremely thermostable a-amylase from hyperthermophilic acrchaebacterium Pyrococcus furiosus. J. Biol. Chem. 268, 24394-24401
  25. Leveque, E., S. Janecek, B. Haye, and A. Belarbi. 2000. Thermophilic archaeal amylolytic enzymes. Enzyme Microbiol. Technol. 26, 3-14 https://doi.org/10.1016/S0141-0229(99)00142-8
  26. Maheshwari, R., G. Bharadwaj, and M.K. Bath. 2000. Thermophilic fungi: their physiology and enzymes. Microbiol. Mol. Biol. Rev. 64, 461-488 https://doi.org/10.1128/MMBR.64.3.461-488.2000
  27. Mamo, G. and A. Gessesse. 1999. Purification and characterization of two raw-starch-digesting thermostable $\alpha$-amylases from a thermophilic Bacillus. Enzyme Microbiol. Technol. 25, 433-438 https://doi.org/10.1016/S0141-0229(99)00068-X
  28. Medda, G.L. and A.K. Chandra. 1980. New strains of Bacillus lincheniformis and Bacillus coagulans producing thermostable $\alpha$-amylase active at alkaline pH. J. Appl. Bacteriol. 48, 48-58
  29. Mohapatra, B.R., U.C. Banerjee, and M. Bapuji. 1998 Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastella sp. J. Biotechnol. 60, 113-117 https://doi.org/10.1016/S0168-1656(97)00197-1
  30. Mouchacca, J. 1997. Thermophilic fungi: biodiversity and taxonomic status. Crypt Mycol. 18, 19-69
  31. Niehaus, F., C. Bertoldo, C. Kahler, and G. Antranikian. 1999. Extremophiles as a source of novel enzymes for industrial applications. Appl. Microbiol. Biotechnol. 51, 711-729 https://doi.org/10.1007/s002530051456
  32. Nigam, P. and D. Singh. 1995. Enzyme and microbial systems involved in starch processing. Enzyme Microbiol. Technol. 17, 770-778 https://doi.org/10.1016/0141-0229(94)00003-A
  33. Peixoto, S.C., J.A. Jorge, H.F. Terenzi, and M. deL. Polizelli. 2003. Rhizopus microsporus var. rhizopodiformis: a thermotolerant fungus with potential for production of thermostable amylases. Int. Microbiol. 6, 269-273 https://doi.org/10.1007/s10123-003-0140-1
  34. Saboury, A.A. and F. Karbassi. 2000. Thermodynamic studies on the interaction of calcium ions with alpha-amylase. Thermochimica Acta, 362, 121-129 https://doi.org/10.1016/S0040-6031(00)00579-7
  35. Shaw, J.F., F.P. Lin, S.C. Chen, and H.C. Chen. 1995. Purification and properties of an extracellular $\alpha$-amylase from Thermus sp. Bot. Bull. Acad. Sc. 36, 195-200
  36. Somkuti, G.A. and D.H. Steinberg. 1980. Thermoacidophilic extracellular $\alpha$-amylase for Mucor pusillus. Dev. Ind. Microbiol. 21, 327-337
  37. Sriroth, K., R. Chollkup, S. Chotineeranat, K. Piyachomkwan, and C. Oates. 2000. Processing cassava waste for improved biomass utilization. Biores. Technol. 71, 63-69 https://doi.org/10.1016/S0960-8524(99)00051-6
  38. Takasaki, Y. 1982. Production maltohexaose by $\alpha$-amylase from Bacillus circulans G-6. Agric. Biol. Chem. 46, 1539-1547 https://doi.org/10.1271/bbb1961.46.1539
  39. Taylor, P.M., E.J. Napier, and I.D. Fleming. 1978. Some properties of a glucoamylase produced by the thermophilic fungus Humicola lanuginosus. Carb. Res. 61, 301-308 https://doi.org/10.1016/S0008-6215(00)84490-0
  40. Van der Maarel, M.J., B. van der Veen, J.C. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the $\alpha$-amylases family. J. Biotechnol. 94, 137-155 https://doi.org/10.1016/S0168-1656(01)00407-2
  41. Vandersall, A.S., R.G. Cameron, C.J. Nairn, G. Telenosky, and R.J. Wodzinski. 1995. Identification, characterization and partial purification of glucoamylase from A. niger (syn A ficuum) NRRL 3135. Prep. Biochem. 25, 29-55 https://doi.org/10.1080/10826069508010106
  42. Vieille, C., D.S. Burdette, and J.G. Zeikus. 1996. Thermozymes. Biotechnol. Annu. Rev. 2, 1-83 https://doi.org/10.1016/S1387-2656(08)70006-1
  43. Vieille, C. and G.J. Zeikus. 2001. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 1-43 https://doi.org/10.1128/MMBR.65.1.1-43.2001
  44. Vihinen, M. and P. Mantsala. 1989. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 24, 329-418 https://doi.org/10.3109/10409238909082556