Removal Characteristics of Chlorination Disinfection By-Products by Activated Carbons

활성탄 공정에서의 염소 소독부산물 제거특성

  • Son, Hee-Jong (Water Quality Research Institute, Waterworks Headquarter, Busan) ;
  • Roh, Jae-Soon (Water Quality Research Institute, Waterworks Headquarter, Busan) ;
  • Kim, Sang-Goo (Water Quality Research Institute, Waterworks Headquarter, Busan) ;
  • Bae, Seog-Moon (Water Quality Research Institute, Waterworks Headquarter, Busan) ;
  • Kang, Lim-Seok (Department of Environmental Engineering, Pukyong National University)
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 노재순 (부산광역시 상수도사업본부 수질연구소) ;
  • 김상구 (부산광역시 상수도사업본부 수질연구소) ;
  • 배석문 (부산광역시 상수도사업본부 수질연구소) ;
  • 강임석 (부경대학교 환경공학과)
  • Published : 2005.07.31

Abstract

Adsorption and biodegradation performance of chlorinated by-products such as trihalomethanes(THMs) and haloacetic acids(HAA5) on granular activated carbon were evaluated in this study. The coconut-based activated carbon was found more effective than others in adsorption of THMs due to larger pore volume of less than $20{\AA}$. The wood-based activated carbon was less effective than coconut- and coal-based activated carbon in adsorption nevertheless having larger pore volume and specific surface area than others. The maximum adsorption capacity(X/M) of coconut-based carbon for THMS was 1.1-1.5 times larger than coal based carbon and 14.1-31.4 times larger than wood based activated carbons. Activated carbon usage rate(CUR) of coconut-, coal- and wood-based activated carbons for chloroform were 9.4, 11.2 and 38 g/day respectively. In the evaluation of adsorption isotherm of THM species for coconut-, coal- and wood-based activated carbons, k value of chloroform was the lowest in the THM species, It menas that chloroform is difficult to remove by activated carbon adsorption. and BDCM, CDBM, bromoform are in the succeeding order of adsorption. In the evaluation of biodegradation rate, mean biodegradation rate was chloroform 7%, BDCM 5%, CDBM 4% and bromoform 3%, respectively THMs are difficult materials to be biodegraded. In the evaluation of characteristics of adsorption and biodegradation for HAA5 species, HAA5 species appear to be removed effectively by activated carbon. Most of the HAA5 are adsorbed at the beginning of operation periods and HAA5 except TCAA were almost biodegraded from bed volume of 2,000 and more than 90 percent of biodegradation of TCAA was started from bed volume around 4,000 and after that biodegradation rate was increased with increasing bed volume.

활성탄 재질별 THM 흡착능은 야자계 활성탄이 가장 우수하였고, 다음으로 석탄계, 목탄계 활성탄 순으로 평가되었으며, 야자계 활성탄의 최대 흡착량(X/M)이 석탄계와 목탄계 활성탄에 비해 각각 $1.1{\sim}1.5$배 및 $14.1{\sim}31.4$배 정도 높은 것으로 조사되었다. 또한, 활성탄 사용율(CUR)의 경우는 chloroform 흡착 제거시 야자계 활성탄은 1일 9.4 g의 활성탄을 사용하여 제어할 수 있는 반면, 석탄계나 목탄계 활성탄의 경우는 11.2 g 및 38 g의 활성탄을 사용하여야만 제어가 가능한 것으로 나타났다. THM 구성종별 활성탄에 대한 흡착특성을 조사한 결과 chloroform의 k값이 가장 낮은 것으로 조사되어 THM 구성종들 중 활성탄을 이용한 흡착제거가 가장 어려운 것으로 조사되었으며, 다음으로 BDCM, CDBM, bromoform 순으로 나타났다. bromoform은 chloroform에 비해 k값이 활성탄 재질별로 $5{\sim}12$배 정도 큰 것으로 나타났다. Biofilter에서의 THM 구성종들에 대한 생분해 특성을 평가한 결과, 물질별 평균 생분해율이 chloroform의 경우 7%, BDCM 5%, CDBM 4%, bromoform 3%로 나타나 생물분해가 어려운 것으로 조사되었다. HAA5 구성종들에 대한 활성탄 흡착 및 biofilter를 이용한 생분해 특성 평가 결과는 운전초기에는 흡착 제거되었으며, biofilter에서의 생물분해능은 TCAA를 제외한 나머지 4종은 bed volume 2000 부근부터는 생물분해에 의해 거의 100% 제거되는 것으로 나타났으나, TCAA는 bed volume 4000 이후부터 생물분해에 의해 90% 이상 제거되기 시작하여 bed volumed의 증가와 함께 제거율도 상승하였다.

Keywords

References

  1. Epidemiology and toxicology of disinfection by-products;Formation and Control of Disinfection By-Products in Drinking Water Zavaleta, J.O.;Hauchman, F.S.;Cox, M.W.;Singer, P.C.(ed.)
  2. Water Supply: Research & Technology-Aqua v.43 Balancing chemical and microbial risks of drinking water disinfection. part I. benefits and potential risks Craun, G.F.;Bull, R.J.;Clark, R.M.;Doull, J.;Grabow, W.;Marsh, G.M.;Okun, D.A.;Regli, S.;Sobsey, M.D.;Symons, J.M.
  3. Environ. Health Perspect. v.105 no.1 Disinfection by-products in drinking water: critical issues in health effects research Fawell, J.;Robinson, D.;Bull, R.;Birnbaum, L.;Boorman, G.;Butterworth, B.;Daniel, P.;Galal-Gorchev, H.;Hauchman, F.;Julkunen, P.;Klaassen, C.;Krasner, S.;Orme-Zavaleta, J.;Rief, J.;Tardiff, R.
  4. Proceedings of AWWA 2004 Annual Conference Strategies at Charleston CPW for compliance with DBP regulations Hargette, P.;Budd, G.;Cline, M.
  5. J. AWWA v.95 no.4 Use of ozonation and FBT to control THM precursors Yavich, A.A.;Masten, S.J.
  6. Water Res. v.36 Effect of alum treatment on the trihalomethane formation and bacterial regrowth potential of natural and synthetic waters Page, D.W.;van Leeuwen, J.A.;Spark, K.M.;Drikas, M.;Withers, N.;Mulcahy, D.E.
  7. The use of $CIO_2$ in drinking water treatment: formation and control of inorganic by-products($CIO_2,\;CIO_3$);Disinfection By-products in Water Treatment: the Chemistry of Their Formation and Control Vel Leitner, N.K.;De Laat, J.;Dore, M.;Suty, H.;Minear, R.A.(ed.);Amy, G.L.(ed.)
  8. Control of disinfection by-product formation using ozone;Formation and Control of Disinfection By-Products in Drinking Water Reckhow, D.A.;Singer, P.C.(ed.)
  9. Proceedings of 2003 AWWA Annual Conference The effects of adsorption isotherm testing conditions on GAC bed life estimation Tung, H.H.;Unz, R.F.;Xie, Y.F.
  10. Proceedings of 2003 AWWA Annual Conference Effects of empty bed contact time and temperature on the removal of haloacetic acids using biologically activated carbon Wu, H.;Xie, Y.F.
  11. J. AWWA v.90 no.4 Adsorption capacity of GAC for synthetic organics Speth, T.F.;Miltner, R.J.
  12. J. AWWA v.82 no.2 Technical note: adsorption capacity of GAC for synthetic orgnics Speth, T.F.;Miltner, R.J.
  13. Water Res. v.25 no.12 Adsorption of chlorinated organic compounds on activated carbon from water Urano, K.;Yamamoto, E.;Tonegawa, M.;Fujie, K.
  14. J. Colloid Interface Sci. v.265 Adsorption from aqueous solutions of chlorinated organic compounds onto activated carbons Bembnowska, A.;Pelech, R.;Milchert, E.
  15. Chemosphere v.55 Biodegradation of haloacetic acids by bacterial enrichment cultures McRae, B.M.;LaPara, T.M.;Hozalski, R.M.
  16. J. Water Environ. Technol. v.1 no.2 Application of hydrothermal reaction to biodegradability improvement of refractory pollutants: structural conversion of di- and trichloroacetic acid to biodegradable products Kim, K.;Fujita, M.;Daimon, H.;Fujie, K.
  17. KS 활성탄 시험방법, KS M 1802 한국표준협회
  18. 수처리제의 기준과 규격 및 표시기준, 환경부 고시 제1999-173호 환경부
  19. Adsorption of organic compounds;Water Quality and Treatment: A Handbook of Community Water Supplies Snoeyink, V.L.;Pontius, F.W.(ed.)
  20. National Exposure Research Laboratory, Office of Research Development, Method 552.2 US EPA
  21. J. Colloid Interf. Sci. v.210 Adsorption of NOM onto activated carbon: effect of surface charge, ion strength and pore volume distribution Bjelopavlic, M.;Newcombe, G.;Hayes, R.
  22. Chemosphere v.58 no.11 Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A Choi, K.J.;Kim, S.G.;Kim, C.W.;Kim, S.H.
  23. 대한환경공학회지 v.26 no.11 상수원수증에 함유된 천연유기물질 분자량 크기가 염소 소독부산물 생성에 미치는 영향 손희종;노재순;정철우;이철우;강임석
  24. J. AWWA v.94 no.5 Using BAC for HAA removal-part 2: column study Xie, Y.;Zhou, H.
  25. J. AWWA v.94 no.4 Using BAC for HAA removal-part I: batch study Zhou, H.;Xie, Y.