The Removal of Natural Organic Matter and Disinfection By-Product Precursor by Ozone

오존처리에 의한 천연유기물질 변화 및 염소 소독부산물 전구물질 제어

  • Son, Hee-Jong (Water Quality Research Institute, Waterworks Headquarter, Busan) ;
  • Roh, Jae-Soon (Water Quality Research Institute, Waterworks Headquarter, Busan) ;
  • Kim, Sang-Goo (Water Quality Research Institute, Waterworks Headquarter, Busan) ;
  • Kang, Lim-Seok (Dept. of Environmental Engineering, Pukyong National University) ;
  • Lee, Yong-Doo (Dept. of Environmental Engineering, College of Ocean Sciences, Cheju National University)
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 노재순 (부산광역시 상수도사업본부 수질연구소) ;
  • 김상구 (부산광역시 상수도사업본부 수질연구소) ;
  • 강임석 (부경대학교 환경공학과) ;
  • 이용두 (제주대학교 환경공학과)
  • Published : 2005.10.31

Abstract

The purpose of this study was to find the transformation of organic matter as well as chlorine by product formation potential with ozone dosage. The removal percents of $UV_{254}$ and DOC were $23%{\sim}65%$ and $2%{\sim}15%$ and THMFP and HAAFP were $17%{\sim}52%$ and $9%{\sim}29%$ respectively at $0.5{\sim}3\;mgO_3/mgDOC$ ozone dosage. The hydrophobic and transphobic organic matter were reduced to $37%{\sim}68%$ and $35%{\sim}64%$, on the other hand the hydrophilir organic matter was increased to $40%{\sim}49%$ at $0.5{\sim}3\;mgO_3/mgDOC$ ozone dosage. The produced THMFP and HAAFP from the hydrophobic and transphilic organic matter were decreased greatly with increasing ozone dosage but these by products were increased in the hydrophilic matter. The produced THMFP and HAAFP per unit DOC were decreased and reactivity was reduced greatly with increasing crone dosage. The removal rate of THMFP per unit DOC was much higher than HAAFP by ozone treatment. The Br-THMFP per unit DOC was much more removed than chloroformFP per unit DOC with increasing ozone dosage. and The removal rate of TCAAFP per unit DOC was increased with increasing ozone dosage but TCAAFP was not affected by ozone treatment. Br-HAAFP was decreased at $1\;mgO_3/mgDOC$ ozone dosage but was not more removed above $1\;mgO_3/mgDOC$ ozone dosage. Br-HAAFP had lower removal effect than Br-THMFP by ozone treatment. The optimal ozone dosage can be determined about $1\;mgO_3/mgDOC$ by considering both disinfection by product formation and economical efficiency.

오존 투입농도 $0.5{\sim}3\;mgO_3/mgDOC$에서 $UV_{254}$와 DOC가 각각 $23%{\sim}65%$, $2%{\sim}15%$의 제거율을 나타내었고, THMFP와 HAAFP의 제거율은 오존 투입농도 $0.5{\sim}3\;mgO_3/mgDOC$에서 각각 $17%{\sim}52%$, $9%{\sim}29%$로 나타났다. 오존 투입농도에 따른 수중 천연유기물질의 특성변화를 조사한 결과, 소수성 및 반친수성 유기물질은 오존 투입농도 $0.5{\sim}3\;mgO_3/mgDOC$에서 각각 $37%{\sim}68%$, $35%{\sim}64%$의 제거율을 나타내었으며, 반면 친수성 유기물질은 $40%{\sim}49%$의 증가율을 보였다. 오존처리에 의한 천연유기물질 특성변화에 따른 염소 소독부산물 생성능 변화를 조사한 결과, 소수성 및 반친수성 유기물질에서 생성되는 THMFP와 HAAFP는 오존 투입농도가 증가함에 따라 큰 폭으로 감소하였으나, 친수성 유기물질에서는 증가하는 경향을 나타내었다. 오존처리에 의한 단위 DOC당 THMFP와 HAAFP의 변화에서 두 물질 모두 오존처리에 의해 단위 DOC당 생성능의 감소를 보였고, 오존 투입농도가 증가할수록 반응성의 감소가 크게 나타났다. 그리고, 단위 DOC당 HAAFP 보다는 THMFP의 경우가 오존처리에 따른 제거율이 높은 것으로 조사되었다. 오존 투입농도별 천연유기물질 특성변화에 따른 단위 DOC당 THMFP 및 HAAFP 변화를 조사한 결과, 소수성, 반친수성 및 친수성 유기물질에서의 단위 DOC당 THMFP 및 HAAFP 모두 반응성이 감소하는 것으로 나타났다. Br-THMFP와 chloroformFP에 대한 오존 투입농도별 제거특성은 Br-THMFP의 경우 오존 투입농도에 따라 제거율 및 단위 DOC당 THMFP 제거율이 chloroformFP 보다 월등히 높은 것으로 나타났다. 또한, Br-HAAFP와 DCAAFP와 TCAAFP에 대한 오존 투입농도별 제거특성을 조사한 결과에서 TCAAFP는 오존 투입농도가 증가할수록 제거율 및 단위 DOC와의 반응성 감소율도 증가하였으나, DCAAFP는 오존처리 전 후로 제거율 및 단위 DOC와의 반응성에는 변화가 없었으며, Br-HAAFP의 경우는 $1\;mgO_3/mgDOC$ 이상의 오존 투입농도에서는 제거율의 상승은 나타나지 않았고, Br-THMFP에 비하여 오존처리에 의해 낮은 제거율을 나타내었다. 본 실험결과에서 소독부산물 생성능과 경제성을 고려하여 오존 투입농도를 결정한다면 $1\;mgO_3/mgDOC$가 적정 오존 투입농도로 조사되었다.

Keywords

References

  1. J. Am Water Works Assoc. v.89 no.5 Evaluating criteria for enhanced coagulation compliance White, M.C.;Thompson, J.D.;Harrington, G.W.;Singer, P.C. https://doi.org/10.1002/j.1551-8833.1997.tb08228.x
  2. Appl. Environ. Microbiol. v.54 Inactivation of biofilm bacteria Lechevallier, M.W.;Cawthon, C.D.;Lee, R.G.
  3. Appl. Environ. Microbiol. v.57 no.3 Bacterial nutrients in drinking water LeChevallier, M.W.;Schulz, W.;Lee, R.G.
  4. Water Research v.36 Changes in content of microbially available phosphorus, assimilable organic carbon and microbial growth potential during drinking water treatment processes Lehtola, M.J.;Miettinen, I.T.;Vartiainen, T.;Martikainen, P.J. https://doi.org/10.1016/S0043-1354(02)00100-8
  5. Water Treat. Exam. v.23 Formation of haloform during chlorination of natural waters Rook, J.J.
  6. Epidemiology and toxicology of disinfection by-products, Formation and Control of Disinfection By-Procucts in Drinking Water Zavaleta, J.O.;Hauchman, F.S.;Cox, M.W.;Singer, P.C.(ed.)
  7. Water Supply: Research & Technology-Aqua v.43 Balancing chemical and microbial risks of drinking water disinfection. part I. benefits and potential risks Graun, G.F.;Bull, R.J.;Clark, R.M.;Doull, J.;Grabow, W.;Marsh, G.M.;Okun, D.A.;Regli, S.;Sobsey, M.D.;Symons, J.M.
  8. J. AWWA v.87 no.10 DBPs in chlorinated North Carolina drinking water Singer, P.C.;Obolensky, A.;Greiner, A.
  9. Chemistry of disinfection by-product formation;Formation and Control of Disinfection By-Products in Drinking Water Krasner, S.W.;Singer, P.C.(ed.)
  10. Water Research v.31 no.15 Formation of strong mutagen [3-chloro-4-(dichloromethy)-5-hydroxy-2(5H)-furanone] MX by chlorination of fractions of lake water Xu, X.;Zou, H.;Zhang, J. https://doi.org/10.1016/S0043-1354(96)00360-0
  11. Water Sci. & Technol. v.40 no.9 Water treatment poractice and the formation of genotoxic chlorohydroxyfuranones Kronberg, L.
  12. Chemosphere v.45 Factors on the formation of disinfection by-products MX, DCA and TCA by chlorination of fulvic acid from lake sediments Chen, Z.;Yang, C.;Lu, J.;Zou, H.;Zhang, J. https://doi.org/10.1016/S0045-6535(00)00549-X
  13. Environ. Health Perspect. v.105 no.1 Disinfection by-products in drinking water: critical issues in health effects research Fawell, J.;Robinson, D.;Bull, R.;Birnbaum, L.;Boorman, G.;Butterworth, B.;Daniel, P.;Galal-Gorchev, H.;Hauchman, F.;Julkunen, P.;Klaassen, C.;Krasner, S.;Orme-Zavaleta, J.;Rief, J.;Tardiff, R.
  14. Trends in Analytical Chemistry v.22 no.10 Disinfection by-products and other emerging contaminants in drinking water Richardson, S.D. https://doi.org/10.1016/S0165-9936(03)01003-3
  15. Desalination v.151 Chlorination by-products in surface water treatment process Kim, J.;Chung, Y.;Shin, D.;Kim, M.;Lee, Y.;Lim, Y.;Lee, D. https://doi.org/10.1016/S0011-9164(02)00967-0
  16. Water Research v.35 no.12 A study on the distribution of chlorination by-products in treated water in Korea Lee, K.J.;Kim, B.H.;Hong, J.E.;Pyo, H.S.;Park, S.J.;Lee, D.W. https://doi.org/10.1016/S0043-1354(00)00583-2
  17. Toxicology and Applied Pharmacology v.184 Percutaneous adsorption of trihalomethanes, haloacetic acids and haloketones Xu, X.;Mariano, T.M.;Laskin, J.D.;Weisel, C.P. https://doi.org/10.1016/S0041-008X(02)99494-9
  18. Environ. Sci. Technol. v.15 no.4 Preparative isolation of aquatic humic substances Thurman, E.M.;Malcolm, R.L. https://doi.org/10.1021/es00086a012
  19. Environ. Sci. Technol. v.15 no.5 Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastwaters Leenheer, J.A. https://doi.org/10.1021/es00087a010
  20. Office of Research and Development, Method 552.2 U.S.EPA National Exposure Research Laboratory
  21. J. AWWA v.87 no.1 NOM characterization and treatability Owen, D.M.;Amy, G.L.;Chowdhury, Z.K.;Paode, R.;McCoy, G.;Viscosil, K.
  22. Water Sci. & Technol. v.35 Competitive removal of biodegradable dissolved organic carbon in ozonation-biological activated carbon Kim, W.H.;Nishijima, W.;Shoto, E.;Okada, M.
  23. Water Research v.35 no.9 Transformation of dissolved organic matter during ozonation: effects on trihalomethane formation potential Galapate, R.P.;Baes, A.U.;Okada, M. https://doi.org/10.1016/S0043-1354(00)00489-9
  24. Ozone Sci. Eng. v.22 Changes in NOM fraction through treatment: a comparison of ozonation and chlorination Marhaba, T.F.;Van, D.;Lippincott, R.L. https://doi.org/10.1080/01919510008547209
  25. Ozone Sci. Eng. v.21 Ozone-induced changes in natural organic matter(NOM) structure Westerhoff, P.;Dcbroux, J.;Aiken, G.;Amy, G. https://doi.org/10.1080/01919512.1999.10382893
  26. Mechanisms of organic halide formation during fulvic acid chlorination and implications with respect to preozonation;Water Chlorination: Chemistry, Environmental Impact and Health Effects Reckhow, D.A.;Singer, P.C.;Jolly, R.L.(ed.);Bull, R.J.(ed.);Davis, W.P.(ed.);Katz, S.(ed.);Roberts, M.H.(ed.);Jacobs, V.A.(ed.)
  27. 대한환경공학회지 v.24 no.12 고도정수처리 공정에서의 천연유기물질 특성변화 및 소독부산물 전구물질의 제거특성 평가 손희종;노재순;박은주;황영도;신판세;강임석;주기재
  28. Characterization of Natural Organic Matter and Its Relationship to Treatability Owen, D.M.;Amy, G.;Chowdhury, Z.K.
  29. Proceedings of AWWA Annual Conference Reactivity of NOM in forming chlorinated DBPs Sinha, S.;Amy, G.;Sohn, J.
  30. Proceedings of IWA World Water Congress Evaluation of drinking water treatment processes focusing on NOM removal and DBP formation Chae, S.
  31. Proceedings of AWWA WQTC Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes under controlled chlorination conditions Liang, L.;Singer, P.C.
  32. Environ. Sci. & Technol. v.33 Identification of new ozone disinfection by-products in drinking water Richardson, S.D.;Thruston, A.D.;Caughran, T.V.;Chen, P.H.;Collette, T.W.;Floyd, T.L. https://doi.org/10.1021/es981218c
  33. Environment International v.29 Effect of NOM characteristics on brominated organics formation by ozonation Huang, W.J.;Chen, L.Y.;Peng, H.S. https://doi.org/10.1016/S0160-4120(03)00099-0