The Characteristics of Microbial Community for Biological Activated Carbon in Water Treatment Plant

생물활성탄 공정에서 활성탄 재질에 따른 부착미생물 군집특성

  • Son, Hee-Jong (Water Quality Research Institute, Waterworks Headquarter, Busan) ;
  • Park, Hong-Ki (Water Quality Research Institute, Waterworks Headquarter, Busan) ;
  • Lee, Soo-Ae (Myungjang Water Treatment Plant, Waterworks Headquarter, Busan) ;
  • Jung, Eun-Young (Water Quality Research Institute, Waterworks Headquarter, Busan) ;
  • Jung, Chul-Woo (Ulsan Regional Innovation Agency, Ulsan Industry Promotion Techno Park)
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 박홍기 (부산광역시 상수도사업본부 수질연구소) ;
  • 이수애 (부산광역시 상수도사업본부 명장정수사업소) ;
  • 정은영 (부산광역시 상수도사업본부 수질연구소) ;
  • 정철우 (울산산업진흥TP 전략산업기획단)
  • Published : 2005.12.31

Abstract

The purpose of this research is to survey characteristics of microbial community and the removal efficiency of organic materials for biological activated carbon in water treatment plant. Coal based activated carbon retained more attached bacterial biomass on the surface of the activated carbon than the other activated carbon with operating time and materials. The heterotrophic plate count(HPC), eubacteria(EUB) and 4,6-diamidino-2-phenylindole(DAPI) counts were ranged from $0.95{\times}10^7$ to $52.4{\times}10^7$ CFU/g, from $3.8{\times}10^8$ to $134.2{\times}10^8$ cells/g and from $7.0{\times}10^8$ to $250.2{\times}10^8$ cells/g, respectively. The biomass of EUB and DAPI appeared to be much more $10^2$ than HPC, which were increasing in bed volume of 20,000 at the stage of steady-state. The change of microbial community by analyzing fluorescent in situ hybridization(FISH) method with rRNA-targeted oligonucleotide probes, the dominant group was $\alpha$-proteobacteria($\alpha$ group) and high G+C content bacteria(HGC) the lowest distributing rate before reaching the bed volume of 20,000. After reaching the bed volume of 20,000, $\alpha$ group and other groups of bacteria became decreased, on the other hand, the proportion of both $\beta$-proteobacteria($\beta$ group) and $\gamma$-proteobacteri($\gamma$ group) were increasing. Coconut and wood based activated carbons had similar trend with coal based activated carbon, but the rate of $\alpha$ group on coal based activated carbon had gradually increased. Bacterial production with the operating period appeared highest in coal based activated carbon at the range of $1.2{\sim}3.4\;mg-C/m^3{\cdot}h$ while the coconut and wood based activated carbon were ranged from 1.1 to 2.6 $mg-C/m^3{\cdot}h$ and from 0.7 to 3.5 $mg-C/m^3{\cdot}h$ respectively. The removal efficiency of assimilable organic carbon(AOC) showed to be highly correlated with bacterial production. The correlation coefficient between removal efficiency of AOC and bacterial production were 0.679 at wood based activated carbon, 0.291 at coconut based activated carbon and 0.762 at coal based activated carbon, respectively.

본 연구에서는 pilot 규모의 활성탄 공정을 운전하면서 입상활성탄(granular activated carbon: GAC) 단계에서부터 생물활성탄(biological activated carbon: BAC) 단계로 전환되고 난 후 까지 활성탄 재질별로 유기물 제거능과 미생물 군집특성을 함께 조사하였다. 활성탄 재질별 유기물 흡착능은 석탄계 재질의 활성탄이 가장 우수하였고, bed volume 20,000 이후부터는 3가지 활성탄들이 정성상태에 도달하였다. 부착세균의 생체량과 생산력 또한 석탄계 재질 활성탄에서 가장 높은 것으로 나타났으며, heterotrophic plate count(HPC), eubacteria(EUB), 4,6-diamidino-2-phenylindole(DAPI) 및 생산력은 각각 $0.95{\times}10^7{\sim}52.4{\times}10^7$ CFU/g, $3.8{\times}10^8{\sim}134.2{\times}10^8$ cell/g, $7.0{\times}10^8{\sim}250.2{\times}10^8$ cell/g 및 $1.2{\sim}3.4\;mg{\cdot}C/m^3{\cdot}h$의 범위로 나타났다. 그리고 부착세균의 생체량과 생산력은 모두 bed volume 20,000 이후부터 증가하는 경향을 보였다. 활성탄 재질별 부착세균 생체량과 세균 생산력에 대한 동화가능한 유기탄소(assimilable organic carbon: AOC) 제거율과의 상관성 평가에서는 석탄계 재질 활성탄이 가장 양호한 상관성을 보였으며, 항목별로는 세균 생산력에 대한 상관성이 상대적으로 높은 것으로 나타났다. Fluorescent in situ hybridization(FISH)에 의한 세균군집 구조 조사결과, bed volume 20,000까지는 모든 활성탄에서 $\alpha$ 그룹($\alpha$-proteobacteria)과 other bacteria가 우점하였고, bed volume 20,000 이상에서는 석탄계 재질 환성탄에서는 $\beta$ 그룹($\beta$-proteobacteria)과 $\gamma$ 그룹($\gamma$-proteobacteria)의 우점비율이 상승하였으나, 야자계와 목탄계에서는 $\alpha,\;\beta$$\gamma$ 그룹의 우점비율이 상승하는 것으로 조사되었다.

Keywords

References

  1. J. Wat. Suppl.: Res. & Technol.-Aqua v.41 no.3 A pilot study of biological GAC filtration in drinking water treatment Servais, P.;Billen, G.;Bouillot, P.;Benezet, M.
  2. 대한환경공학회지 v.25 no.7 고도정수공정에서의 BOM 제거특성 평가 노재순;손희종;박홍기;황영도;류동춘;강임석;주기재
  3. 대한환경공학회지 v.27 no.7 활성탄 공정에서의 염소 소독부산물 제거특성 손희종;노재순;김상구;배석문;강임석
  4. J. AWWA v.93 no.1 Ozone and biofiltration optimization for multiple objective Carlson, K.H.;Amy, G.L.
  5. Ozone in Water Treatment: Application and Engineering Langlais, B.;Recjhow, D.A.;Brink, D.R.
  6. Water Sci. Tech., Water Supply v.2 no.2 Biofilter pretreatment for the control of microfiltration membrane fouling Park, J.;Takizawa, S.;Katayama, H.;Ohgaki, S.
  7. Water Res. v.35 no.16 Comparative measurements of microbial activity in drinking water biofilters Fonseca, A.C.;Summers, R.S.;Hernandez, M.T.
  8. J. Water Suppl.: Res. & Technol.-Aqua v.51 no.1 Impact of filtration material on nitrification in biological filters used in drinking water production Kihn, A.;Andersson, A.;Laurent, P.;Servais, P.;Prevost, M.
  9. Water Sci. Tech.: Water Supply v.2 no.5-6 Treatment of humic surface water at cold temperatures by ozonation and biofiltration Melin, E.;Eikebrokk, B.;Brugger, M.;Odegaard, H.
  10. Environ. Sci. Technol. v.33 no.14 Impact of temperature on drinking water biofilter performance and microbial community structure Moll, D.M.;Summers, R.S.;Fonseca, A.C.;Matheis, W.
  11. Water Res. v.38 Artificial grounderwater treatment: biofilm activity and organic carbon removal performance Langmark, J.;Storey, M.V.;Ashbolt, N.J.;Stenstrom, T.A.
  12. Can. J. Microbiol. v.25 no.3 A tentative direct microscopic method for counting living marine bacteria Kogure, K.;Simidu, U.;Taga, N.
  13. J. Microbiol. Methods v.20 no.1 Rapid in situ assessment of physiological activities in bacterial biofilms using fluorescent probes Yu, F.P.;McFeters, G.A.
  14. ASM News v.60 Identification of uncultured bacteria: a challenging task for molecular taxonomists Amann, R.;Ludwig, W.;Schleifer, K.H.
  15. Microbial. Rev. v.59 Phylogenetic and in situ defection of individual microbial cells without cultivation Amann, R.;Ludwig, W.;Schleifer, K.H.
  16. Annu. Rev. Microbial. v.39 Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats Staley, J.T.;Konopka, A.
  17. Appl. Environ. Microbial. v.62 no.6 Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization Alfreider, A.;Pernthhaler, J.;Amman, R.;Sattler, B.;Glockner, F.O.;Wille, A.;Psenner, R.
  18. Water Res. v.36 Population changes in a biofilm reactor for phosphorus removal as evidenced by the use of FISH Falkentoft, C.M.;Muller, E.;Amz, P.;Harremoes, P.;Mosbak, H.;Wwlderer, P.A.;Wuertz, S.
  19. FEMS Microbiol. Ecol. v.44 Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports Bouvier, T.;Giorgio, P.A.D.
  20. Appl. Environ. Microbial. v.60 no.3 Development of an rRNA-targeted oligonucleotide probe specific for the genus acinetobacter and its application for in situ monitoring in activated sludge Wagner, R.;Erhart, R.;Manz, W.;Amann, R.;Lemmer, H.;Wedi, D.;Schleifer, K.H.
  21. Mar. Ecol. v.32 Characterization of bacterial communities from activated sludge: culture-dependent numerical identification versus in situ identification using group- and genus-specific rRNA-targeted oligonucleotide probes Kampfer, P.;Erhart, R.;Beimfohr, C.;Bohringer, J.;Wagner, M.
  22. Appl. Environ. Microbiol. v.63 Phylogenetic analysis and in situ identification of bacteria in activated sludge Snaidr, J.;Amann, R.;Huber, I.;Ludwig, W.;Schleifer, K.H.
  23. Appl. Environ. Microbiol. v.59 In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes Manz, W.;Szewzyk, D.;Ericsson, P.;Amann, R.;Schleifer, K.H.;Stenstrom, T.A.
  24. FEMS Microbiol. Ecol. v.22 Dynamics of biofilm formation in drinking water: phylogenetic affiliation and metabolic potential of single cells assessed by formazan reduction and in situ hybridization Kalmbach, S.;Manz, W.;Szewzyk, U.
  25. Desalination v.172 Biofouling of ultra- and nanofiltration membranes for drinking water treatment characterized by fluorescence in situ hybridization (FISH) Horsch, P.;Gorenflo, A.;Fuder, C.;Deleage, A.;Frimmel, F.H.
  26. J. AWWA v.74 no.10 Determining the concentration of easily assimilable organic carbon in drinking water Van der Kooij, D.;Visser, A.;Hijnen, W.A.M.
  27. 第41回 日本水道硏究發表會 發表論文集 粒狀活性炭表層のおける微生物の動向 長澤
  28. Heterotrophic plate count;Standard Methods for the Examination of Water and Wastewater APHA, AWWA, WEF;Eaton, A.D.(ed.);Clesceri, L.S.(ed.);Greenberg, A.E.(ed.)
  29. Mar. Biol. v.66 Thymidine incorporation as a measure of heterotrophic bacterio-plankton production in marine surface waters: evaluation and field results Fuhrman, J.A.;Azam, F.
  30. A Manual of Chemical and Biological Methods for Seawater Analysis Parsons, T.R.;Maita, Y.;Lalli, C.M.
  31. Appl. Environ. Microbiol. v.45 Estimating bacterioplankton production by the $[^3H]$thymidine incorporation in a eutrophic Swedish Lake Bell, R.T.;Ahlgren, G.M.;Ahlgren, I.
  32. Bergey's Manual of Systematic Bacteriology Krieg, N.R.;Holt, J.G.
  33. Appl. Environ. Microbial. v.56 no.6 Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations Amann, R.;Binder, B.J.;Olson, R.J.;Chisholm, S.W.;Devereux, R.;Stahl, D.A.
  34. J. AWWA v.85 no.5 Testing biologically active filters for removing aldehydes formed during ozonation Krasner, S.W.;Sclimenti, M.J.;Coffey, B.M.
  35. J. AWWA v.87 no.12 Biofiltration performance: part 1, relationship to biomass Wang, J.Z.;Summers, R.S.;Miltner, R.J.
  36. Block Biology of Microorganisms Madigan, T.M.;Martinko, J.M.;Parker, J.
  37. 한국미생물학회지 v.35 소양호에서의 세균군집구조의 계절적.수직적 변화 김동주;홍선희;안태석
  38. Appl. Environ. Microbiol. v.58 Phylogentic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions Manz, W.;Amann, R.;Ludwig, W.;Wangner, M.
  39. Appl. Environ. Microbiol. v.65 Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization Glockner, F.O.;Fuchs, B.M.;Amann, R.
  40. Appl. Environ. Microbiol. v.56 Assessment of bacteriological activity in carbon treatment of drinking water Stewart, M.H.;Wolfe, R.L.;Means, E.G.