Changes of Nitrifying Bacterial Populations in Anaerobic-Anoxic-Oxic Reactors

혐기-무산소-호기 반응조내 질화세균군의 변화

  • Park, Jong-Woong (Department of Health Environment, Daegu Hanny University) ;
  • Lee, Young-Ok (Division of Life Science, Daegu University) ;
  • Go, Jun-Heok (Department of Health Environment, Daegu Hanny University) ;
  • Ra, Won-Sik (Department of Health Environment, Daegu Hanny University) ;
  • Lim, Uk-Min (Department of Health Environment, Daegu Hanny University) ;
  • Park, Ji-Eun (Division of Life Science, Daegu University)
  • 박종웅 (대구한의대학교 보건환경학과) ;
  • 이영옥 (대구대학교 생명과학부) ;
  • 고준혁 (대구한의대학교 보건환경학과) ;
  • 라원식 (대구한의대학교 보건환경학과) ;
  • 임욱민 (대구한의대학교 보건환경학과) ;
  • 박지은 (대구대학교 생명과학부)
  • Published : 2005.02.28

Abstract

This study was carried out to investigate the changes of nitrifying bacterial populations including Nitrosomonas sp. and Nitrobacter sp. in $A^2/O$ pilot plant with the configuration of anaerobic-anoxic-oxic reactors. The suspended nitrifying bacterial populations in mixed liquor and those of attached populations on granular carrier surface made by molded waste tire were analyzed by Fluorescent in situ Hybridization(FISH) method. The nitrification rate of a pilot plant showed the value of $1.97{\sim}2.98\;mg\;N/g$ MLVSS hr. The ratios of suspended ammonia oxidizer including Nitrosomonas sp. (NSO) to total bacteria in each reactor were oxic < anoxic < anaerobic. On the contrary, the ratios of suspended nitrite oxidizer including Nitrobacter sp. (NIT) were anaerobic < anoxic < oxic. The thickness, dry density and mass of the attached biomass on granular carriers were $180{\sim}188\;{\mu}m$, $38.5{\sim}43.9\;mg/cm^3$, $29.4{\sim}32.5\;mg/g$, respectively. Also, the ratios of attached nitrifier to total bacteria on granular carriers were similar regardless of ammonia/nitrite-oxidizer (NSO; 3.2%, NIT; 2.8%) and very low compared to those(NSO; $22.8{\sim}28.4%$, NIT; $17{\sim}26%$) of suspended nitrifier.

본 연구는 질화작용에 관여하는 Nitrosomonas sp. 등의 암모니아산화세균과 Nitrobacter sp. 등 아질산산화세균이 $A^2/O$ Pilot 장치의 혐기조, 무산소조, 호기조에서 어떤 양상으로 변화하는지를 조사하는데 있다. 혼합액의 부유 질화세균군과 폐타이어로 성형 제조된 입상담체에 부착된 질화세균군은 FISH법으로 분석하였다. Pilot 장치의 질산화속도는 $1.97{\sim}2.98mg\;N/g\;MLVSS{\cdot}hr$의 값을 보였다. 각 반응조에서 총 부유 세균수중 암모니아 산화세균군 (NSO로 검출된 세균군)이 차지하는 비율은 호기조 < 무산소조 < 혐기조 순이었으나, 이와 반대로 아질산 산화세균(NIT로 검출된 세균)이 차지하는 비율은 혐기조 < 무산소조 < 호기조 순이었다. 생물막의 두께와 건조밀도 및 담체 무게당 부착된 미생물량은 각각 $180{\sim}188\;{\mu}m$, $38.5{\sim}43.9\;mg/cm^3$, $29.4{\sim}32.5\;mg/g$ 이었고, 담체에 부착된 총세균수 중 질화세균이 차지하는 비율은 NSO(3.2%)와 NIT(2.8%)가 거의 비슷하였으나, 각 반응조에 존재하는 부유성 질화세균, 즉 NSO($22.8{\sim}28.4%$)와 NIT($17{\sim}26%$)에 비해서는 부착성 질산화 세균의 비가 현저히 낮았다.

Keywords

References

  1. 박종웅, 송영해, '오 . 폐수의 고도처리를 위한 호기성 침지형 생물막 여과장치의 개발,' 대한환경공학회지, 20, 305-314(1998)
  2. Metcalf & Eddy, Inc., Wastewater Engineering: Treatment Disposal Reuse, 3rd ed., McGraw-Hill Book Co., New York, 663-759(1991)
  3. Amann, R., Ludwig, W., and Schleifer, K. H., 'Phylogenetic and in situ detection of individual microbial cells without cultivation,' Microbial. Rev., 59, 143-169(1995)
  4. Wilderer, P. A., Bungartz, H. J., Lemmer, H., Wagner, M., Keller, J., and Wuertz, S., 'Modem scientific methods and their potential in wastewater science and technology,' Water Res., 36, 370-393(2002) https://doi.org/10.1016/S0043-1354(01)00220-2
  5. Wagner, M., Rath, G., Koops, H.-P., Floos, J., and Amann, R., 'In situ analysis of nitrifying bacteria in sewage treatment plants,' Water Sci. Technol., 34, 237-244(1996)
  6. Glockner, F. O., Fuchs, B. M., and Amann, R., 'Bacterioplankton compo sitions of lakes and oceans: a first comparison based on fluorescence in situ hybridization,' Appl. Environ. Microbiol., 65, 3721-3726(1999)
  7. 박종웅, 송주형, '폐타이어로 성형제조된 부정형 과립담체에 부착된 미생물의 측정방법,' 대한상하수도학회지, 17, 255-260(2003)
  8. Park, J. W. and Ganczarczyk, J. J., 'Gravity separation of biomass washed-out from an aerated submerged filter,' Environ. Technol., 15, 945-955(1994) https://doi.org/10.1080/09593339409385502
  9. Zahid, W. M. and Ganczarczyk, J. J., 'Suspended solids in biological filter effluents,' Water Res., 24, 215-220 (1990) https://doi.org/10.1016/0043-1354(90)90105-F
  10. 환경교육연구회, 환경오염공정시험법(수질편), 대학서림, 서울(2000)
  11. APHA, AWWA, WEF, Standard Method for Examination of Water and Wastewater, 18th ed., Washington, D.C.(1992)
  12. Schramm, A., DE Beer, D., Wagner, M., and Amann, R., 'Identification and activities in situ of nitrosospira and nitrospira sp. as dominant populations in a nitrifying fluidized bed reactor,' Appl. Environ. Microbiol., 64, 3480-3485(1998)
  13. U.S.EPA, Manual Nitrogen Control, EPA/625/R-93/010, Washington, D.C.(1993)
  14. Randall, C. W., et al., Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal, Technomic Publishing Co. Inc (1992)
  15. Madigan, T. M., Martino, J., and Parker, J., Block Biology of Microorganisms, Prentice Hall Publisher(2003)
  16. Hunik, J. H., Meijer, H. J. G., and Tramper, J., 'Kinetics of nitrobacter agilis at extreme substrate, product and salt concentrations,' Appl. Microbiol. Biotechnol., 40, 442-448(1993)
  17. Hunik, J. H., Meijer, H. J. G., and Tramper, J., 'Kinetics of nitrosomonas europaea at extreme substrate, product and salt concentrations,' Appl. Microbiol. Biotechnol., 37, 802-807(1992)
  18. Schramm, A., Larsen, L. H., Revsbech, N. P., Ramsing, N. B., Amann, R., and Schleifer, K. H., 'Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes,' Appl. Environ. Microbiol., 62, 4641-4647(1996)