The Protective Effects of Isoflavone Extracted from Soybean Paste in Free Radical Initiator Treated Rats

  • Nam, Hye-Young (Department of Food Science & Biotechnology of Animal Resources, Konkuk University) ;
  • Min, Sang-Gi (Department of Food Science & Biotechnology of Animal Resources, Konkuk University) ;
  • Shin, Ho-Chul (College of Veterinary Medicine, Konkuk University) ;
  • Kim, Hwi-Yool (College of Veterinary Medicine, Konkuk University) ;
  • Fukushima, Michihiro (Department of Animal Science, Obihiro College of Agriculture and Veterinary Medicine) ;
  • Han, Kyu-Ho (Department of Animal Science, Obihiro College of Agriculture and Veterinary Medicine) ;
  • Park, Woo-Jun (U.S. Wheat Associates Inc.) ;
  • Choi, Kang-Duk (Department of Genomic Informatics, Grad. School of Bio & Information Technology Hankyong University) ;
  • Lee, Chi-Ho (Department of Food Science & Biotechnology of Animal Resources, Konkuk University)
  • Published : 2005.10.31

Abstract

This study was performed to investigate the antioxidant effects of Korean soybean paste extracts (SPE) on 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced liver damage in rats. Thirty healthy Sprague Dawley rats were selected and divided into 5 groups. Isoflavone contents were measured using HPLC technique. The antioxidant activity was measured in the plasma and liver of the rats with the following results. Levels of isoflavone in fermented soy paste, red pepper paste and soy sauce were 28.9, 30.3 and $3.4\;{\mu}g/g$ for daidzein and 244.3, 187.7 and $6.1\;{\mu}g/g$ for genistein, respectively. The activities of glutamate oxaloacetic transaminase (GOT) and glutamate pyruvate transaminase (GPT) were significantly higher in the AAPH-treated group in the SPE-AAPH group (p<0.05). The thiobarbituric acid reactive substance (TBARS) production was significantly increased in the AAPH-treated liver tissue (P<0.05). Glutathione peroxidase (GPx), glutathione reductase (GR) and catalase in the liver were significantly (p<0.05) decreased by AAPH administration. The glutathione (GSH) concentration was higher in the SPE-treated (Ed- confirm) group than in the control and other groups (p<0.05). These results suggest that SPE led to increased anti oxidative activities against AAPH-induced peroxyl radical.

Keywords

References

  1. Am. J. Clin. Nutr. v.71 Protection against breast cancer with genistein, (Ed- confirm punctuation here) a component of soy Lamartiniere, C.A.
  2. Nutr. Cancer v.21 Soy intake and caner risk Messina, M.J.;Persky, V.;Setchell, K.D.R.;Barnes, S. https://doi.org/10.1080/01635589409514310
  3. J. Cell. Biochem. v.22 Rational for the use of genistein- containing soy matrices in chemoprevention trials for breast and prostate cancer Barnes, S.;Peterson, T.G.;Coward, L.
  4. Trends Endocrin. Met. v.6 Estrogenic soybean isoflavones and chronic disease-risks and benefits Clarkson, T.B.;Anthony, M.S.;Hughes, S.L. Jr. https://doi.org/10.1016/1043-2760(94)00087-K
  5. Pro. Nutr. Soc. v.55 Physiological effects of phyto-oestrogens (Edspelling 'phytoestrogens'?) in relation to cancer and order human health risks Cassidy, A.
  6. Adv. Exp. Med. Biol. v.354 Potential role of dietary isoflavones in the prevention of cancer Barnes, S.;Peterson, G.;Grubbs, C.;Setchell, K.
  7. J. Clin. Lab. Invest. v.50 Western diet and western diseases: some hormonal and biochemical mechanism and associations Adlercreutz, H.
  8. Brit. J. Cancer v.80 Isoflavones inhibit intestinal epithelial cell proliferation and induce apoptosis in vitro Booth, C.;Hargreaves, D.F.;Hadfield, J.A.;McGown, A.;Potten, C.S. https://doi.org/10.1038/sj.bjc.6690559
  9. Phytother. Res. v.13 Antioxidant action and potential antidiabetic properties of an isoflavonoid-containing soybean phytochemical extract (SPE) Vedavanam, K.;Srijayanta, S.;Lgita, K.;Raman, A.;Wiseman, H. https://doi.org/10.1002/(SICI)1099-1573(199911)13:7<601::AID-PTR550>3.0.CO;2-O
  10. Environ. Health Persp. v.103 Phytoestrogens epidemiology and a possible role in cancer protection Adlercreutz, H.
  11. Cad. Sci. v.90 Genistein, a dietary-derived inhibitor of in vitro angiogenesis Fotsis, T.;Pepper, M.;Adlercreutz, H.;Flesichmann, G.;Hase, T.;Montesano, R.;Schweigerer, L.
  12. Nutr. Cancer v.20 Inhibition of tumor promoter-induced hydrogen peroxide formation in vitro and in vivo by genistein Wei, H.;Wei, L.;Frenkel, K.;Bowen, R.;Barnes, S. https://doi.org/10.1080/01635589309514265
  13. J. Nutr. v.125 In vitro hormonal effects of soybean isoflavones Molteni, A.;BrizioMolteni, L.;Persky, V.
  14. Jpn. J. Clin. Oncol v.28 Effect of soybean isoflavones on cell growth and apoptosis of the human prostate cancer cell line LNCaP Onozawa, M.;Fukuda, K.;Ohtani, M.;Akaza, H.;Sugimura, T.;Wakabayashi, K. https://doi.org/10.1093/jjco/28.6.360
  15. Free Radical Res. v.26 Antioxidant activity of phytoestrogenic isoflavones Ruiz-Larrea, M.B.;Mohan, A.R.;Paganga, G.;Miller, N.J.;Bolwell, G.P.;Rice Evans, C.A. https://doi.org/10.3109/10715769709097785
  16. Nutr. Cancer v.29 Effect of structurally related flavones/isoflavones on hydrogen peroxide production and oxidative DNA damage in phorbol ester stimulated IIL-60 cells Giles, D.;Wei, H. https://doi.org/10.1080/01635589709514605
  17. Eur. J. Nutr. v.38 Effects of a soy milk supplement on plasma cholesterol levels and oxidative DNA damage in men-a pilot study Mitchell, J.H.;Collins, A.R. https://doi.org/10.1007/s003940050055
  18. Free Radic. Res v.26 Antioxidant activity of phytoestrogenic isoflavones Ruiz-Larrea, M.B.;Mohan, A.R.;Paganga, G.;Miller, N.J.;Bolwell, G.P. https://doi.org/10.3109/10715769709097785
  19. Nutr. Cancer. v.25 Effect of dietary genistein on antioxidant enzyme activities in SENCAR mice Cai, Q.;We, H. https://doi.org/10.1080/01635589609514423
  20. Proc. Natl. Acad. Sci. USA. v.95 Effect of soybean phytoestrogen intake on low density lipoprotein oxidation resistance Tikkanen, M.J.;Wahala, K.;Ojala, S.;Vihma, V.;Adlercreutz, H.
  21. Am. J. Clin. Nutr. v.72 Isoflavone phytoestrogens consumed in soy decrease F2-isoprostane concentrations and increase resistance of low - density lipoprotein to oxidation in humans Wiseman, H.;O'Reilly, J.D.;Aldercreutz, H.;Mallei, A.I.;Bowey, E.A.;Rowladn, L.R.;Sanders, T.A.B.
  22. Carcinogenesis v.21 no.5 Inhibitory effects of Bifidobacterium - fermented soy milk on 2-amino-1-methyl-6-phenylimidazo [4,5-b pyridine-induced rat mammary carcinogenesis, with a partial contribution of its component isoflavones Ohta, Toshihisa;Nakatsugi, Seiichi;Watanabe, Kouji https://doi.org/10.1093/carcin/21.5.937
  23. J. Chem Soc. Perkin v.II Study of autoxidation by spin trapping: Spin trapping of peroxyl radicals by phenyl-N-tert butyl nitrone Ohto, N.;Niki, E.;Kamiya, Y.
  24. Chem Pharm Bull. v.33 Effects of extracts of leaves of Artemisia species, and caffeic acid and chlorogenic acid on lipid metabolic injury in rats fed peroxidized oil Kimura, Y.;Okuda, H.;Okuda, T.;Hatano, T.;Agata, I.;Arichi, S. https://doi.org/10.1248/cpb.33.2028
  25. J. Free Rad. Biol. Med. v.2 Damage to biological tissues induced by radical initiator AAPH and its inhibition by chain-breaking antioxidants Terao, K.;Niki, E. https://doi.org/10.1016/S0748-5514(86)80070-8
  26. Korea Soybean Digest. v.16 Some properties and contents of isoflavone in soybean and soybean foods Kim, S.R.;Hong, H.D.;Kim, S.S.
  27. J. Agric. Food Chem. v.38 A simplified HPLC method for the determination of phytoestrogens in soybean and its processed products Wang, G.;Kuan, S.;Fransis, O.;Ware, G.;Carman, A.S. https://doi.org/10.1021/jf00091a041
  28. Korea Soybean Digest. v.17 Does soybean isoflavone have adverse effects on humans? (Ed- confilm the plural?) Sohn, Heon-Soo;Lee, Yun-Sim;Shin, Hae-Choul;Chung, Hyung-Keun
  29. Anal Biochem. v.95 Assay for lipid peroxide in animal tissues thiobarbituric reactions Ohkawa, H.;Ohishi, N.;Yagi, K. https://doi.org/10.1016/0003-2697(79)90738-3
  30. Biochem. Med. v.15 A simple fluorometric assay for lipoperoxide in blood plasma Yagi, K. https://doi.org/10.1016/0006-2944(76)90049-1
  31. Anal. Biochem. v.14 Fluorometric assay for glutathione Cohn, V.H.;Lyle, J.A. https://doi.org/10.1016/0003-2697(66)90286-7
  32. Eur J Biochem v.67 Glutathione reductase from human erythrocytes. Catalytic properties and aggregation Worthington, D.J.;Rosemeyer, M.A. https://doi.org/10.1111/j.1432-1033.1976.tb10654.x
  33. Biochem. Biophys. Res. Commun. v.71 Glutathione peroxidase activity in selenium deficient rat liver Lawrence, R.A.;Burk, R.F. https://doi.org/10.1016/0006-291X(76)90747-6
  34. J. Biol. Chem. v.195 A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase Beers, R.F.;Sizer, I.W.
  35. Anal. Biochem. v.87 A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples Markwell, M.A.K.;Hass, S.N.;Dieher, D.D.;Tolbert, N.E. https://doi.org/10.1016/0003-2697(78)90586-9
  36. J. Natl Cancer Inst. v.83 The role of soy products in reducing risk of cancer Messina, M.;Barnes, S. https://doi.org/10.1093/jnci/83.8.541
  37. J. Nutr. v.125 In vitro hormonal effects of soybean isoflavones Molteni, A.;Brizo-Molteni, L.;Persky, V.
  38. The Korean Nutrition Society v.34 Dose response relationship of isoflavone supplementation on plasma lipid profiles and total antioxidant status in perimenopausal and postmenopausal women C, W.;Lee, M.J.;Lee, S.K.