Influence of Functional Food Containing Bacillus polyfermenticus SCD on Lipid and Antioxidant Metabolisms in Rats Fed a High-Fat and High-Cholesterol Diet

  • Published : 2005.12.31

Abstract

We evaluated the effects of newly developed functional food containing Bacillus polyfermenticus SCD as the main material on the lipid and antioxidant metabolisms of hypercholesterolemic rats. Thirty male SD rats were divided into three groups after a 1-week adaptation period and were fed with a high fat-cholesterol diet (control), or with a high fat-cholesterol diet supplemented with low or high doses ($3.1\;{\times}\;10^6\;cfu/day$ or $3.1\;{\times}\;10^8\;cfu/day$) of B. polyfermenticus SCD and other physiological active materials for 6 weeks. Both doses of B. polyfermenticus SCD significantly reduced hepatic total cholesterol and triglycerides, while increasing the fecal excretion rates of total lipid, total cholesterol and triglycerides. B. polyfermenticus SCD increased the total radical trapping antioxidant potential (TRAP). The erythrocytic glutathione peroxidase activity in the B. polyfermenticus groups was significantly lower than that in the control group. Plasma TRAP levels exhibited a highly significant negative correlation with hepatic total cholesterol while a significant positive correlation was detected between fecal total cholesterol and plasma TRAP. This hypolipidemic and antioxidative effect of B. polyfermenticus SCD seemed to be unrelated to its dosage. These results suggest that functional food containing B. polyfermenticus SCD can improve oxidative stress and hepatic lipid profiles by enhancing the excretion of cholesterol and triglycerides in feces of rats fed with high fat-high cholesterol diet.

Keywords

References

  1. J. Kor. Soc. Food Sci. Nutr. v.28 Microbiological identification of medical probiotic bispan strain Jun, K.D.;Lee, K.H.;Kim, W.S.;Paik, H.D.
  2. Lett. Appl. Microbiol. v.32 Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyftrmenticus Lee, K.H.;Jun, K.O.;Kim, W.S.;Paik, H.D.
  3. Korean J. Biotechnol. Bioeng. v.18 Antioxidative and cholesterol-reducing activity of Bacillus polyfermenticus SCD Jeong, H.Y.;Kim, T.H.;Park, J.S.;Kim, K.T.;Paik, H.D.
  4. Food Sci. Biotechnol. v.13 Effect of Bacillus polyfermenticus SCD and its bacteriocin on MNNG-induced DNA damage Park, E.J.;Park, J.S.;Paik, H.D.
  5. Atherosclerosis v.118 Serum cholesterol and ischaemic heart disease Wald, N.J.;Law, M.R.
  6. Pharmacol. Rev. v.48 Effects of oxidized low-density lipoprotein on vascular contraction and relaxation: clinical and pharmacological implications in atherosclerosis Cox, D.A.;Cohen, M.L.
  7. Circ. Res. v.77 Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion Pritchard, K.A. Jr.;Groszek, L.;Smalley, O.M.;Sessa, W.C.;Wu, M.;Villalon, P.;Wolin, M.S.;Stemerman, M.B.
  8. Atherosclerosis v.117 Therapy with HMG CoA reductase inhibitors: characteristics ofthe long-term permanence of hypocholesterolemic activity Pazzucconi, F.;Dorigotti, F.;Gianfranceschi, G.;Campagnoli, G.;Sirtori, M.;Franceschini, G.;Sirtori, C.R.
  9. M. J. Drugs v.36 Clinical experience with simvastatin compared with cholestyramine Mol. Erkelens, O.W.;Baggen, M.G.;Van Doormaal, J.J.;Kettner, M.;Koningsberger, J.C.
  10. J. Biol. Chem. v.226 A simple method for isolation and purification of total lipids from animal tissues Folch, J.;Lees, M.;Sloan-Stanley, G.H.
  11. Glutathione peroxidase;Red cell metabolism: A manual for biochemical methods Beutler, E.
  12. Catalase;Methods of enzymatic analysis Aebi, H.
  13. Total antioxidant status in plasma and body fluids;Methods in Enzymology Rice-Evans, C.;Miller, N.J.
  14. J. Dairy Sci. v.83 Effect of administration of Lactobacillus gasseri on serum lipids and fecal steroids in hypercholesterolemic rats Usman, T.;Hosono, A.
  15. J. Am. Coll. Nutr. v.18 Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans Anderson, J.W.;Gilliland, S.E.
  16. Food Sci. Biotechnol. v.12 Effects of feeding Lactobacillus plantarum I-UL4 isolated from Malaysian Tempeh on growth performance, faecal flora and lactic acid bacteria and plasma cholesterol concentrations in postweaning rats Foo, H.L.;Loh, T.C.;Law, F.L.;Urn, Y.Z.;Kufli, C.N.;Rusul Gulam
  17. Milchwissenschaft v.50 Binding of cholesterol with lactic acid bacterial cells Hosono, A.;Tono-oka, T.
  18. Appl. Environ. Microbiol. v.49 Assimilation of cholesterol by Lactobacillus acidophilus Gilliland, S.E.;Nelson, C.R.;Maxwell, C.
  19. Appl. Environ. Microbiol. v.68 Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut Pereira, D.I.A.;Gibson, G.R.
  20. Appl. Environ. Microbiol. v.33 Deconjugation of bile acids by intestinal lactobacilli Gilliland, S.E.;Speck, M.L.
  21. Appl. Environ. Microbiol. v.59 The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity Klaver, F.A.;van der Meer, R.
  22. Brit. J. Nutr. v.76 Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on cholesterol metabolism in rats fed on a fat- and cholesterolenriched diet Fukushima, M.;Nakano, M.
  23. Biosci. Biotech. Biochem. v.57 Hypocholesterolemic effect of chitosan in adult males Maezaki, Y.;Tsuji, K.;Nakagawa, Y.;Kawai, Y.;Akimoto, M.
  24. Am. J. Clin. Nutr. v.33 A novel use of chitosan as a hypocholesterolemic agent in rats Sugano, M.;Fujikawa, T.;Hiratsuji, Y.;Nakashima, K.;Fukuda, N.;Hasegawa, Y.
  25. Am. J. Health Syst. Pharm. v.60 Chitosan for weight loss and cholesterol management Shields, K.M.;Smock, N.;McQueen, C.E.;Bryant ,P.J.
  26. Crit. Rev. Food Sci. Nutr. v.41 Inulin and oligofructose as dietary fiber: a review of the evidence Flamm, G.;Glinsmann, W.;Kritchevsky, D.;Prosky, L.;Roberfroid, M.
  27. J. Nutr. v.128 The water-soluble extract of chicory influences serum and liver lipid concentrations, cecal shortchain fatty acid concentrations and fecal lipid excretion in rats Kim, M.;Shin, H.K.
  28. New Engl. J. Med. v.320 Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity Steinberg, D.;Parthasarathy, S.;Carew, T.E.;Khoo, J.C.;Witztum, J.L.
  29. Arch. Pathol. Lab. Med. v.116 Theories and new horizons in the pathogenesis of atherosclerosis and the mechanisms of clinical effects Wissler, R.W.
  30. Cancer Res. v.52 Dietary fiber-mediated mechanisms in carcinogenesis Klurfeld, D.M.
  31. J. Physiol. Biochem. v.57 Vitamin E: action, metabolism and perspectives Herrera, E.;Barbas, C.
  32. Curr. Med. Chem. v.8 Flavonoid antioxidants Rice-Evans, C.
  33. Bioorg. Med. Chem. Lett. v.11 Antioxidant activity of water-soluble chitosan derivatives Xie, W.;Xu, P.;Liu, Q.
  34. Biosci. Biotechnol. Biochem. v.62 Antioxidative activities of several marine polysaccharides evaluated in a phosphatidylcholine-liposomal suspension and organic solvents Xue, C.;Yu, G.;Hirata, T.;Terao, J.;Lin, H.
  35. J. Agric. Food Chem. v.52 Lettuce and chicory byproducts as a source of antioxidant phenolic extracts Llorach, R.;Tomas-Barberan, F.A.;Ferreres, F.