Sulfate Modulation for Hydrogen Production by Chlamydomonas reinhardtii in Continuous Culture

Chlamydomonas reinhardtii 연속 배양에서 수소생산을 위안 황 조절

  • Kim, Jun-Pyo (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Park, Tai-Hyun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Mi-Sun (Biomass Research Team, Korea Institute of Energy Research) ;
  • Sim, Sang-Jun (Department of Chemical Engineering, Sungkyunkwan University)
  • 김준표 (성균관대학교 공과대학 화학공학과) ;
  • 박태현 (서울대학교 화학생물공학부) ;
  • 김미선 (한국에너지기술연구원 바이오매스팀) ;
  • 심상준 (성균관대학교 공과대학 화학공학과)
  • Published : 2005.12.30

Abstract

We investigated the effect of sulfate re-addition on hydrogen production under sulfur-deprived condition. When the final concentration of sulfate to cell suspensions($0{\sim}120{\mu}M$) was increased, chlorophyll concentration, culture density, and total amount of $H_2$ produced, increased up to an optimal concentration of $30{\mu}M\;MgSO_4$. Maximum hydrogen volume was 236 mL $H_2/L$ culture at $30{\mu}M\;MgSO_4$. However, the addition of excess sulfate(above $MgSO_4\;60{\mu}M$) delayed the start of hydrogen production and the induction of hydrogenase. Accordingly, the final yield of hydrogen production was reduced. Using these results, we attempted the continuous and sustained hydrogen production by sulfate re-addition($30{\mu}M\;MgSO_4$) using a single C. reinhardtii culture for up to 4 cycles. In total, hydrogen production volume was 625 mL $H_2/L$ culture.

우리는 황결핍 환경에서 C. reinhardtii에 의한 수소생산성을 증진시키기 위해 황성분의 농도가 수소생산에 미치는 영향을 조사하였고, 그 결과를 이용하여 황 재첨가에 의한 연속적인 수소생산을 수행하였다. $MgSO_4$ 용액을 농도별(0, 15, 30, 60, 120 ${\mu}M$)로 희석하여 황결핍 초기에 첨가하였을 때, 최적 황농도는 $30{\mu}M$로서 236 mL $H_2/L$ culture를 생산하였다. 황결핍 시 황성분의 첨가는 PSII 활성화에 기여하여 hydrogenase가 수소합성에 이용할 수 있는 전자를 다량 발생시키기 때문이다. 그러나 초기에 첨가해 준 황농도가 너무 높으면, 황결핍 시간이 지연($MgSO_4\;60{\mu}M$의 경우) 되거나 황결핍이 일어나지 않기($MgSO_4\;120{\mu}M$의 경우) 때문에 hydrogenase가 유도되지 않는다. 따라서 수소생산량이 다른 농도에 비해 감소하거나 수소가 전혀 생산되지 않았다. 연속적인 수소생산을 위한 황성분 재첨가는 총 4회 수행되었고, 발생된 총 수소생산량은 625 m/L $H_2/L$ culture였다. 그러나 황성분을 재첨가해 줄 때마다 수소생산량은 점차 감소되었다. 이것은 황결핍 조건에서 단일항 산소에 의한 chlorophyll 파괴 및 세포 수의 감소, 또한 배양액 내의 pH의 증가 때문에 수소생산이 감소된 것으로 사료된다. 따라서 황결핍 조건에서 조류를 이용한 연속적인 수소생산 공정을 개발하기 위해서 황성분 첨가시기를 조절하여 세포의 사멸을 방지하고, 배양액내 pH 조절을 위한 다양한 buffer 첨가 실험 등 수소생산성을 지속적으로 유지할 수 있는 다양한 연구가 필요하다.

Keywords

References

  1. Dunn, S. (2002), Hydrogen futures: toward a sustainable energy system, Int. J. Hydrogen Energy 27, 235-264 https://doi.org/10.1016/S0360-3199(01)00131-8
  2. Dincer, I. (2002), Technical and exergetic aspects of hydrogen energy systems, Int. J. Hydrogen Energy 27, 265-285 https://doi.org/10.1016/S0360-3199(01)00119-7
  3. Das, D. and V. Nejat (2001), Hydrogen production by biological processes: a survey of literature, Int. J. Hydrogen Energy 26, 13-28 https://doi.org/10.1016/S0360-3199(00)00058-6
  4. Gaffron, H. and J. Rubin (1942), Fermentative and photochemical production of hydrogen in algae, J. Gen. Physiol. 26, 219-240 https://doi.org/10.1085/jgp.26.2.219
  5. Ghirardi, M. L., L. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum, and A. Melis (2000), Microalgae: a green source of renewable $H_2$, Trends Biotechnol. 18, 506-511 https://doi.org/10.1016/S0167-7799(00)01511-0
  6. Hase, E., Y. Morimura, S. Mihara, and H. Tamiyama (1958), The role of sulfur in the cell division of Chlorella, Arch. Microbiol. 31, 87-95
  7. Zhang, L., T. Happe, and A. Melis (2002), Biochemical and morphological characterization of sulfur-deprived and $H_2$-producing Chlamydomonas reinhardtii (green alga), Planta 214, 552-561 https://doi.org/10.1007/s004250100660
  8. Melis, A, L. Zhang, M. Forestier, M. L. Ghirardi, and M. Seibert (2000), Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii, Plant Physiol. 122, 127-135 https://doi.org/10.1104/pp.122.1.127
  9. Antal, T. K., T. E. Krendeleva, T. V. Laurinavichene, V. V. Makarova, A. A. Tsygankov, M. Seibert, and A. B. Rubin (2001), The relationship between the photosystem 2 activity and hydrogen production in sulfur deprived Chlamydomonas reinhardtii cells, Biochem. Biophys. Mol. BioI. 381, 371-374
  10. Antal, T. K., T. E. Krendeleva, T. V. Laurinavichene, V. V. Makarova, M. L. Ghirardi, A. B. Rubin, A. A. Tsygankov, and M. Seibert (2003) The dependence of algal $H_2$, production on Photosystem II and $O_2$ consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells, Biochimi. Biophys. 1607, 153-160 https://doi.org/10.1016/j.bbabio.2003.09.008
  11. Kosourov, S., A. Tsygankov, M. Seibert, and M. L. Ghirardi (2002), Sustained hydrogen photoproduction by Chlamydomonas reinhardtii : Effects of Culture Parameters, Biotechnol. Bioeng. 78, 731-740 https://doi.org/10.1002/bit.10254
  12. Kosourov, S, M. Seibert, and M. L. Ghirardi (2003) Effect of extracellular pH on the metabolic pathways in sulfur-deprived, $H_2$-producing Chlamydomonas reinhardtii cultures, Plant Cell Physiol. 44, 146-155 https://doi.org/10.1093/pcp/pcg020
  13. Kim, J. P., C. D. Kang, S. J. Sim, M. S. Kim, T. H. Park, D. H. Lee, D. J. Kim, J. H. Kim, Y. K. Lee, D. Pak (2005) Cell age optimization for hydrogen production induced by sulfur deprivation using a green alga Chlamydomonas reinhardtii UTEX 90, J. Microbiol. Biotechnol. 15, 131-135
  14. Tsygankov, A., S. Kosourov, M. Seibert, M. L. Ghirardi (2002) Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures, Int. J. Hydrogen Energy 27, 1239-1244 https://doi.org/10.1016/S0360-3199(02)00108-8
  15. Laurinavichene, T., I. Tolstygina, A. Tsygankov (2004) The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii, J. Biotechnol. 114, 143-151 https://doi.org/10.1016/j.jbiotec.2004.05.012
  16. Gong, Gyeong Taek, Sang Jun Sim, Daewon Pak, Mi Sun Kim, and Tai Hyun Park (2003), Optimization of organic compounds and hydrogen production in dark fermentation using Chlamydomonas reinhardtii, Korean J. Biotechnol. Bioeng. 18, 51-57
  17. Harris, E. H. (1989), The Chlamydomonas sourcebook, p607 -608. Academic Press, Inc., San Diego, California, USA
  18. Hopkins, W. G. and N. P. A. Huner (2004), Introduction to plant physiology, 3rd ed., p63-166, John Wiley & Sons, Inc., Hoboken, New Jersey, USA
  19. Melis, A. (1999), Photosystem- II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo?, Trends Plant Sci. 4, 130-135 https://doi.org/10.1016/S1360-1385(99)01387-4