Analytical Study on the seismic Performance of Reinforced Concrete Bridge Piers

철근콘크리트 교각의 내진성능에 관한 해석적 연구

Kim, Tae-Hoon;Choi, Jung-Ho;Shin, Hyun-Mock
김태훈;최정호;신현목

  • Published : 2005.05.31

Abstract

The purpose of this study is to assess the seismic performance of reinforced concrete bridge piers. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The proposed numerical method for the seismic performance evaluation of reinforced concrete bridge piers is verified by comparison with reliable experimental results.

이 연구의 목적은 철근콘크리트 교각의 내진성능을 평가하는데 있다. 정확하고 올바른 성능평가를 위하여 신뢰성 있는 비선형 유한요소해석 프로그램을 사용하였다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 이에 대한 콘크리트의 균열모델로서는 분산균열모델을 사용하였다. 이 연구에서는 철근콘트리트 교각의 내진성능평가를 위해 제안한 해석기법을 신뢰성 있는 연구자의 실험결과와 비교하여 그 타당성을 검증하였다.

Keywords

References

  1. 김태훈 (2003) 비선형 유한요소해석을 이용한 철근콘크리트 교각의 내진성능평가, 박사학위논문, 성균관대학교
  2. 김태훈, 김운학, 신현목 (2002) 철근콘크리트 교각의 지진손상평가, 한국지진공학회논문집, 제6권, 제3호, pp. 31-52
  3. 김태훈, 신현목 (2001) Analytical Approach to Evaluate the Inelastic Behaviors of Reinforced Concrete Structures under Seismic Loads. 한국지진공학회논문집, 제5권, 2호, pp. 113-124
  4. American Association of State Highway and Transportation Officials (AASHTO). (1996) Standard Specifications for Highway Bridges. Sixteenth Edition, Washington, D
  5. Applied Technology Council (ATC). (1996) Seismic Evaluation and Retrofit of Concrete Buildings. ATC-40 Report, Redwood City, California
  6. El-Bahy, A., Kunnath, S.K., Stone, W.C. and Taylor, A.W.(1999) Cumulative Seismic Damage of Circular Bridge Columns: Benchmark and Low-Cycle Fatigue Tests. ACI Structural Journal, Vol. 96, No. 4, pp. 633-641
  7. Federal Emergency Management Agency (FEMA). (1997) NEHRP guidelines of the seismic rehabilitation of buildings. FEMA 273, Washington, D.C
  8. Kakuta, Y., Okamura, H. and Kohno, M.(1982) New Concepts for Concrete Fatigue Design Procedures in Japan. IABSE Colloquium on Fatigue of Steel and Concrete Structures, Lausanne, pp. 51-58
  9. Kent, D.C. and Park, R.(1971) Flexural Members with Confined Concrete. Journal of Structural Engineering, ASCE, Vol. 97, No. 7, pp. 1969-1990
  10. Kim, T.H., Lee, K.M., Yoon, C.Y. and Shin, H.M.(2003) Inelastic Behavior and Ductility Capacity of Reinforced Concrete Bridge Piers under Earthquake. I: Theory and Formulation. Journal of Structural Engineering, ASCE, Vol. 129, No. 9, pp. 1199-1207 https://doi.org/10.1061/(ASCE)0733-9445(2003)129:9(1199)
  11. Kunnath, S.K., El-Bahy, A., Taylor, A. and Stone, W.(1997) Cumulative Seismic Damage of Reinforced Concrete Bridge Piers. Report No. NCEER-97-0006, National Center for Earthquake Engineering Research, State University of New York at Buffalo
  12. Lehman, D., Moehle, J., Mahin, S., Calderone, A. and Henry, L. (2004) Experimental Evaluation of the Seismic Performance of Reinforced Concrete Bridge Columns. Journal of Structural Engineering, ASCE, Vol. 130, No. 6, pp. 869-879 https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(869)
  13. Mander, J.B., Panthaki, F.D. and Kasalanati, K.(1994) Low-Cycle Fatigue Behavior of Reinforcing Steel. Journal of Materials in Civil Engineering, ASCE, Vol. 6, No. 4, pp. 453-468 https://doi.org/10.1061/(ASCE)0899-1561(1994)6:4(453)
  14. Taylor, R.L.(2000) FEAP-A Finite Element Analysis Program, Version 7.2 Users Manual, Volume 1 and Volume 2