NF-$\kappa$B decoy potentiates the effects of radiation on vascular smooth muscle cells by enhancing apoptosis

Zhang, Shu-Ying;Park, Kyung-Woo;Oh, Se-Il;Cho, Hyun-Ju;Cho, Hyun-Jai;Park, Jin-Shik;Cho, Young-Seok;Koo, Bon-Kwon;Chae, In-Ho;Choi, Dong-Joo;Kim, Hyo-Soo;Lee, Myoung-Mook

  • Published : 2005.02.28

Abstract

NF-kB promotes cell survival against external stress such as radiation. We examined whether NF-kB decoy transfection enhances the antiproliferative effects of radiation on vascular smooth muscle cells (VSMCs) in vitro. The irradiation induced activation or nuclear translocation of NF-kB p65 in VSMCs was confirmed by immunofluorescence. NF-kB decoy transfection resulted in inhibition of the radiation-induced NF-kB activation in VSMCs and the subsequent reduction of transcription and translocation of ICAM, iNOS, and TNF-a, downstream molecules under the control of NF-kB. By using MTT assay, NF-kB decoy augmented the antiproliferative effects of radiation, where the effect of low dose radiation (2 and 8-Gy) of the cells transfected with NF-kB decoy was equivalent to the high dose (16-Gy) irradiated non-transfected cells at 48 h after irradiation: 1.06±0.16, 1.11±0.22, 1.20±0.25, respectively. The decrease in proliferation and survival of the radiation treated cells by flow cytometry analysis showed that NF-kB inhibition did not show any additive effects on the cell cycle of the irradiated VSMCs, while apoptosis was significantly increased after NF-kB decoy transfection in the irradiated VSMCs (apoptosis fraction: 13.33±2.08% vs. 26.29±7.43%, for radiation only vs. radiation+NF-kB decoy transfection, P<0.05). In addition, at 48 h, NF-kB decoy transfection dose dependently (10 mM vs. 20 mM) inhibited proliferation of 16Gy-irradiated VSMCs, and showed greater antiproliferative efficacy than 100 mM sulfasalazine, a specific NF- kB inhibitor. These results indicate that NF-kB inhibition reduces proliferation and survival of irradiated VSMCs, likely by increased apoptosis rather than additive cell cycle arrest and suggest the possibility of adjunctive gene therapy using NF-kB decoy to improve efficacy and to decrease the adverse effects of intracoronary radiation therapy.

Keywords

References

  1. Baldwin AS, Jr, Azizkhan JC, Jensen DE, Beg AA, Coodly LR. Induction of NF-kappa B DNA-binding activity during the G0-to-G1 transition in mouse fibroblasts. Mol Cell Biol 1991; 11:4943-51
  2. Baldwin AS Jr. The NF-${\kappa}$B and I${\kappa}$B proteins: new discoveries and insights. Annu Rev Immunol 1996;14:649-83 https://doi.org/10.1146/annurev.immunol.14.1.649
  3. Bales KR, Du Y, Dodel RC, Yan GM, Hamilton-Byrd E, Paul SM: The NF-${\kappa}$B/Rel family of proteins mediates Ab-induced neurotoxicity and glial activation. Brain Res Mol Brain Res 1998;57:63-72 https://doi.org/10.1016/S0169-328X(98)00066-7
  4. Bash J, Zong WX, Gelinas C. c-Rel arrests the proliferation of HeLa cells and affects critical regulators of the G1/Sphase transition. Mol Cell Biol 1997;17:6526-36
  5. Brenner DJ, Miller RC, Hall EJ. The radiobiology of intravascular irradiation. Int J Radiat Oncol Biol Phys 1996;36: 805-10
  6. Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 1995;377:552-7 https://doi.org/10.1038/377552a0
  7. Chen F, Castranova V, Shi X. New Insights into the Role of Nuclear Factor-${\kappa}$B in Cell Growth Regulation. Am J Pathol 2001;159:387-97
  8. Condado JA, Waksman R, Calderas C, Saucedo J, Lansky A. Two-year follow-up after intracoronary gamma radiation therapy. Cardiovasc Radiat Med 1999;1:30-5 https://doi.org/10.1016/S1522-1865(98)00014-6
  9. Condado JA, Waksman R, Gurdiel O, Espinosa R, Gonzalez J, Burger B, Villoria G, Acquatella H, Crocker IR, Seung KB, Liprie SF. Long-term angiographic and clinical outcome after percutaneous transluminal coronary angioplasty and intracoronary radiation therapy in humans. Circulation 1997;96: 727-32 https://doi.org/10.1161/01.CIR.96.3.727
  10. Cressman DE, Greenbaum LE, Haber BA, Taub R. Rapid activation of post-hepatectomy factor/nuclear factor kappa B in hepatocytes, a primary response in the regenerating liver. J Biol Chem 1994;269:30429-35
  11. Farb A, Burke AP, Kolodgie FD, Virmani R. Pathological mechanisms of fatal late coronary stent thrombosis in humans. Circulation 2003;108:1701-6 https://doi.org/10.1161/01.CIR.0000091115.05480.B0
  12. Guo Q, Robinson N, Mattson MP: Secreted ${\beta}$-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-${\kappa}$B and stabilization of calcium homeostasis. J Biol Chem 1998;273:12341-51 https://doi.org/10.1074/jbc.273.20.12341
  13. Herzog KH, Chong MJ, Kapsetaki M, Morgan JI, McKinnon P. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 1998;280:1089-91 https://doi.org/10.1126/science.280.5366.1089
  14. Jonathan EC, Bernhard EJ, McKenna WG. How does radiation kill cells? Curr Opin Chem Biol 1999;3:77-83 https://doi.org/10.1016/S1367-5931(99)80014-3
  15. Kaltschmidt B, Kaltschmidt C, Hehner SP, Droge W, Schmitz ML. Repression of NF-kappaB impairs HeLa cell proliferation by functional interference with cell cycle checkpoint regulators. Oncogene 1999;18:3213-25 https://doi.org/10.1038/sj.onc.1202657
  16. King SB, 3rd, Williams DO, Chougule P, Klein JL, Waksman R, Hilstead R, Macdonald J, Anderberg K, Crocker IR. Endovascular beta-radiation to reduce restenosis after coronary balloon angioplasty: results of the beta energy restenosis trial (BERT). Circulation 1998;97:2025-30 https://doi.org/10.1161/01.CIR.97.20.2025
  17. Li N, Karin M. Ionizing radiation and short wavelength UV activate NF-kappaB through two distinct mechanisms. Proc Natl Acad Sci USA 1998;95:13012-7 https://doi.org/10.1073/pnas.95.22.13012
  18. Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, Johnson R, Karin M: The IKK${\beta}$ subunit of I${\kappa}$B kinase (IKK) is essential for nuclear factor ${\kappa}$B activation and prevention of apoptosis. J Exp Med 1999;189:1839-45 https://doi.org/10.1084/jem.189.11.1839
  19. Morishita R, Tomita N, Kaneda Y, Ogihara T. Molecular therapy to inhibit NFkappaB activation by transcription factor decoy oligonucleotides. Curr Opin Pharmacol 2004;4:139-46 https://doi.org/10.1016/j.coph.2003.10.008
  20. Neish AS, Williams AJ, Palmer HJ, Whitley MZ, Collins T. Functional analysis of the human vascular cell adhesion molecule 1 promoter. J Exp Med 1992;176:1583-93 https://doi.org/10.1084/jem.176.6.1583
  21. Otsuka G, Nagaya T, Saito K, Mizuno M, Yoshida J, Seo H. Inhibition of nuclear factor-kappaB activation confers sensitivity to tumor necrosis factor-alpha by impairment of cell cycle progression in human glioma cells. Cancer Res 1999;59:4446-52
  22. Rajagopal V, Rockson SG. Coronary restenosis: a review of mechanisms and management. Am J Med 2003;115:547-53 https://doi.org/10.1016/S0002-9343(03)00477-7
  23. Sawa Y, Morishita R, Suzuki K, Kagisaki K, Kaneda Y, Maeda K, Kadoba K, Matsuda H. A novel strategy for myocardial protection using in vivo transfection of cis element 'decoy' against NFkappaB binding site: evidence for a role of NFkappaB in ischemia-reperfusion injury. Circulation. 1997; 96:II-280-284; discussion II-285
  24. Scott NA, Crocker IR, Yin Q, Sorescu D, Wilcox JH, Griendling KK. Inhibition of vascular cell growth by X-ray irradiation: Comparison with gamma radiation and mechanism of action. Int J Radiation Oncology Biol Phys 2001;103: 485-93
  25. Stoffel A, Chaurushiya M, Singh B, Levine AJ. Activation of NF-kappaB and inhibition of p53-mediated apoptosis by API2/mucosa-associated lymphoid tissue 1 fusions promote oncogenesis.Proc Natl Acad Sci USA 2004;101:9079-84
  26. Sumitomo M, Tachibana M, Nakashima J, Murai M, Miyajima A, Kimura F, Hayakawa M, Nakamura H. An essential role for nuclear factor kappa B in preventing TNF-alpha-induced cell death in prostate cancer cells. J Urol 1999;161:674-9 https://doi.org/10.1016/S0022-5347(01)61993-1
  27. Tanaka M, Fuentes ME, Yamaguchi K, Durnin MH, Dalrymple SA, Hardy KL, Goeddel DV: Embryonic lethality, liver degeneration, and impaired NF-${\kappa}$B activation in $IKK-{\beta}- deficient$ mice. Immunity 1999;10:421-9 https://doi.org/10.1016/S1074-7613(00)80042-4
  28. Russo RJ, Schatz RA, Guarneri EM, Steuterman S, Morris NB, Leon MB, Tripuraneni P. Catheter-Based Radiotherapy to Inhibit Restenosis after Coronary Stenting. N Engl J Med 1997;336:1697-703 https://doi.org/10.1056/NEJM199706123362402
  29. Tomita N, Morishita R, Tomita S, Yamamoto K, Aoki M, Matsushita H, Hayashi S, Higaki J, Ogihara T. Transcription factor decoy for nuclear factor-kappaB inhibits tumor necrosis factor-alpha-induced expression of interleukin-6 and intracellular adhesion molecule-1 in endothelial cells. J Hypertens 1998;16:993-1000 https://doi.org/10.1097/00004872-199816070-00013
  30. Waksman R, Rodriguez JC, Robinson KA, Cipolla GD, Crocker IR, Scott NA, King SB, Wilcox JN. Effect of intravascular irradiation on cell proliferation, apoptosis, and vascular remodeling after balloon overstretch injury of porcine coronary arteries. Circulation 1997;96:1944-52 https://doi.org/10.1161/01.CIR.96.6.1944
  31. Waksman R, White RL, Chan RC, Bass BG, Geirlach L, Mintz GS, Satler LF, Mehran R, Serruys PW, Lansky AJ, Fitzgerald P, Bhargava B, Kent KM, Pichard AD, Leon MB. Intracoronary gamma-Radiation Therapy After Angioplasty Inhibits Recurrence in Patients With In-Stent Restenosis. Circulation 2000;101:2165-71 https://doi.org/10.1161/01.CIR.101.18.2165
  32. Yamada Y, Kirillova I, Peschon JJ, Fausto N. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc Natl Acad Sci USA 1997;94:1441-6 https://doi.org/10.1073/pnas.94.4.1441
  33. Yamasaki K, Asai T,Shimizu M, Aoki M, Hashiya N, Sakonjo H, Makino H, Kaneda Y, Ogihara T, Morishita R. Inhibition of NF-${\kappa}$B activation using cis-element 'decoy' of NF-${\kappa}$B binding site reduces neointimal formation in procine ballooninjured coronary artery model. Gene Ther 2003;10:356-64 https://doi.org/10.1038/sj.gt.3301875