Identification of Relaxation Function in Early-Age Concrete Using Differential-Type Viscoelastic Constitutive Law

미분형 크리프 구성방정식을 이용한 초기재령 콘크리트의 응력이완함수 추정

Oh, Byung-Hwan;Choi, Seong-Cheol;Cha, Soo-Won
오병환;최성철;차수원

  • Published : 2005.01.31

Abstract

The hydration heat generally induces thermal stresses and this in turn may cause the cracking problem in concrete at early ages. Therefore, it is necessary to accurately evaluate the actual stresses that occur in early-age concrete. However, the behavior of concrete at early ages is too complicated to accurately to predict because the development of viscoelastic properties is so rapid due to the fast hydration process during early stages. The purpose of the present study, therefore, is to identify the relaxation function from the measured strains and stresses which reflect the viscoelastic properties for early-age concrete. Furthermore, the compliance function which is necessary in predicting the stress in early-age concrete, was proposed based on the identified relaxation function. To this end, several series of full-scale test members were fabricated, from which temperature, total strains, stress-independent strains, and stresses have been directly measured. The calculated stresses based on the proposed model agree very well with measured stresses. Thus, the proposed model allows more realistic evaluation of actual stresses occurring in early-age concrete.

본 연구는 구속된 변형률에 의해 초기재령 콘크리트에서 발생하는 응력을 합리적으로 평가하기 위하여 실제 구조물의 초기거동 및 응력 특성을 나타낼 수 있는 실구조물 크기의 시험체를 제작하여 타설과 동시에 시간에 따라 온도, 변형률 및 응력을 계측하였다. 시간에 따른 변형률 및 응력 변화량 사이의 구성방정식과 계측된 자료를 이용하여 초기재령 콘크리트의 응력이완함수를 추정하였다. 추정한 응력이완함수를 컴플라이언스 함수로 변환하여 실제 초기재령 콘크리트의 점탄성 거동의 특성을 나타낼 수 있는 컴플라이언스 함수를 제안하였다. 제안한 컴플라이언스 함수와 기존의 모델들을 이용한 응력 해석 결과를 계측 결과와 비교함으로써 제안한 모델의 타당성을 검토하였다. 따라서 본 연구에서 추정한 응력이완함수 및 제안한 컴플라이언스함수는 초기재령 콘크리트의 시간에 따른 응력을 합리적으로 평가하는데 유용하게 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. ACI 207.2R-95 (1995) Effect of Restraint, Volume Change, and Reinforcement on Cracking of Mass Concrete. ACI Manual of Practice, pp. 26
  2. ACI 209R-92 (1997) Prediction of Creep, Shrinkage and Temperature Effect in Concrete Structures. ACI Manual of Concrete Practice, pp. 47
  3. Altoubat, S. A., and Lange D. A. (2001) Tensile Basic Creep: Measurement and Behavior at Early Age, ACI Materials Journal, Vol. 98, No.8, pp. 386-393
  4. ASTM C39 (2002) Standard test method for compressive strength of cylindrical concrete specimens. American Society of Testing and Material, pp. 4
  5. Bazant, Z. P. (1972) Numerical determination of long-range stress history from strain history. Materials and Structures, V. 5, No. 27, pp. 135-141
  6. Bazant, Z. P. (1988) Mathematical Modeling of Creep and Shrinkage of Concrete. John Wiley and Sons, pp. 459
  7. Bazant, Z. P., and Wu, S. T. (1974) Rate-type creep law for aging concrete based on Maxwell-Chain. Materials and Structures, Vol. 7, No. 37, pp. 45-60
  8. Bazant, Z. P., and Panula, L. (1978, 1979) Practical prediction of time-dependent deformations of concrete. Materials and Structures, Vol. 11, No. 65, pp. 307-328
  9. Bazant, Z. P., and Panula, L. (1978, 1979) Practical prediction of time-dependent deformations of concrete. Materials and Structures, VVol. 11, No. 66, pp. 415-434
  10. Bazant, Z. P., and Panula, L. (1978, 1979) Practical prediction of time-dependent deformations of concrete. Materials and Structures, Vol. 12, No. 69, pp. 169-183
  11. de Borst, R., and van den Boogaard, A. H. (1994) Finite-ElementModeling of Deformation and Cracking in Early-Age Concrete. Journal of Engineering Mechanics, ASCE, Vol. 120, No. 12, pp. 2519-2534 https://doi.org/10.1061/(ASCE)0733-9399(1994)120:12(2519)
  12. Boulay, C., and Paties, C. (1993) Strain measurement in early-age concrete. Materials and Structures, Vol. 26, 307-311 https://doi.org/10.1007/BF02472953
  13. Breitenbucher, R (1990) Investigation of thermal cracking with the cracking frame. Materials and Structures, Vol. 23, pp. 172-177 https://doi.org/10.1007/BF02473015
  14. van Breugel, K. (1980) Relaxation of Young Concrete. Research Report 5-80-D8, Delft University of Technology, Delft, pp. 140
  15. Byfors, I. (1980) Plain Concrete at Early Ages. CBI Report FO 3:8, Sweden, pp. 345
  16. CEB-FIP Model Code 1990 (1993) CEB Bulletin d'information No. 213/214, pp. 376
  17. Cha, S. W. (1999) Modeling of Hydration Process and Analysis of Thermal and Hygral Stresses in Hardening Concrete. Ph. D. dissertation, Seoul National University, Seoul, Korea, pp. 202
  18. Chapra, S. C., and Canale, R. P. (1990) Numerical Methods for Engineers, McGraw-Hill, pp. 812
  19. Emborg, M., and Bemander, S. (1994) Assessment of Risk of Thermal Cracking in Hardening Concrete. Journal of Engineering Mechanics, ASCE, Vol. 123, No. 10, pp. 2893-2912
  20. Freiesleben H. P., and Pedersen, E. J. (1977) Maturity Computer for Controlled Curing and Hardening of Concrete. Journal of the Nordic Federation, No 1, Stockhohn, Sweden, (in Swedish), 1977, pp. 21-25
  21. Guenot, I., Torrenti, J.-M., and Laplante, P. (1996) Stress in EarlyAge Concrete : Comparison of Different Creep Models. ACI Materials Journal, Vol. 93, No.3, pp. 254-259
  22. Hauggaard, A. B. (1997) Mathematical modelling and experimental analysis of early-age concrete. Department of Structural Engineering and Materials, Technical University of Denmark, Series R., No. 35, Lyngby 1997, pp. 143
  23. Jonasson, J.-E. (1994) Modelling of temperature, moisture and stresses in young concrete. Division of Structural Engineering, Lulea University of Technology, Doctoral Thesis 1994:153D, pp.225
  24. Kawaguchi, T., and Nakane, S. (1996) Investigation on Determining Thermal Stress in Massive Concrete Structures. ACI Materials Journal, Vol. 93, N. 1, pp. 96-101
  25. Kovler, K. (1994) Testing system for determining the mechanical behavior of early age concrete under restrained and free uniaxial shrinkage. Materials and Structures, Vol. 27, No. 170, pp. 324-330 https://doi.org/10.1007/BF02473424
  26. Kolver, K., Igarashi, S., and Bentur, A. (1999) Tensile creep behavior of high strength concretes at early ages. Materials and Structures, Vol. 32, pp. 383-387 https://doi.org/10.1007/BF02479631
  27. Neville, A. M., Dilger, W. H. and Brooks, J. J. (1983) Creep of plain and structural concrete. Construction Press, pp. 349
  28. Oh, B. H., and Cha, S. W. (2003) Nonlinear Analysis of Temperature and Moisture Distributions in Early-age Concrete Structures Based on Degree of Hydration. ACI Materials Journal, Vol. 100, No.5, Sept.-Oct
  29. Ostergaard, L., Lange, D. A., Altoubat, S. A., and Stang, H. (2001) Tensile Basic Creep of Early-Age under Constant Load. Cement and Concrete Research, Vol. 31, pp. 1895-1899 https://doi.org/10.1016/S0008-8846(01)00691-3
  30. Persson, B. (1999) Influence of maturity on creep of high performance concrete with sealed curing. Material and Structures, Vol. 32, pp. 506-519 https://doi.org/10.1007/BF02481635
  31. de Schutter, G. (1999) Degree of hydration based Kelvin model for the basic creep of early age concrete. Materials and Structures, Vol. 32, pp.260-265 https://doi.org/10.1007/BF02479595
  32. Springenschmid, R, ed. (1998) Prevention of Thermal Cracking in Concrete at Early Ages. State of the Art Report by RILEM TC 119, E&FN Spon, pp. 348
  33. Springenschmid, R., Breitenbucher, R, and Mangold, M. (1994) Development of the cracking frame and the temperature-stress testing machine. Thermal Cracking in Concrete at Early Ages, Proceedings of the International Symposium by RILEM, TU, Munich, Springenschmid, R., ed., E&FN Spon, London, pp. 137-144
  34. Westman, G. (1994) Basic Creep and Relaxation of Young Concrete, Thermal Cracking in Concrete at Early Ages, Proceedings of the International Symposium by RILEM, TU, Munich, Springenschmid, R., ed., E&FN Spon, London, pp. 87-94