Mitogenic Estrogen Metabolites Alter the Expression of β-estradiol-regulated Proteins Including Heat Shock Proteins in Human MCF-7 Breast Cancer Cells

  • Kim, Seong Hwan (Laboratory of Chemical Genomics, Bio-Organic Science Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Su-Ui (Laboratory of Chemical Genomics, Bio-Organic Science Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Myung Hee (Laboratory of Chemical Genomics, Bio-Organic Science Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Bum Tae (Laboratory of Chemical Genomics, Bio-Organic Science Division, Korea Research Institute of Chemical Technology) ;
  • Min, Yong Ki (Laboratory of Chemical Genomics, Bio-Organic Science Division, Korea Research Institute of Chemical Technology)
  • Received : 2005.07.12
  • Accepted : 2005.08.30
  • Published : 2005.12.31

Abstract

Estrogen metabolites are carcinogenic. The comparative mitogenic activities of $17{\beta}$-estradiol (E2) and four metabolites, 2-hydroxyestradiol (2-OHE2), 4-hydroxyestradiol (4-OHE2), $16{\alpha}$-hydroxyestrone ($16{\alpha}$-OHE1) and 2-methoxyestradiol (2-ME), were determined in estrogen receptor(ER)-positive MCF-7 human breast cancer cells. Each of the E2 metabolites caused proliferation of the MCF-7 cells, but only E2 and $16{\alpha}$-OHE1 induced a greater than 20-fold increases in transcripts of the progesterone receptor (PR) gene, a classical ER-mediated gene. This suggests that the mitogenic action of E2 and $16{\alpha}$-OHE1 could result from their effects on gene expression via the ER. E2 metabolites altered the expression of E2-regulated proteins including heat shock proteins (Hsps). $16{\alpha}$-OHE1 and 2-ME as well as E2 increased levels of Hsp56, Hsp60, $Hsp90{\alpha}$ and Hsp110 transcripts, and the patterns of these inductions resembled that of PR. Hsp56 and Hsp60 protein levels were increased by all the E2 metabolites. Levels of the transcripts of 3 E2-upregulated proteins (XTP3-transactivated protein A, protein disulfide isomerase-associated 4 protein and stathmin 1) and an E2-downregulated protein (aminoacylase 1) were also affected by the E2 metabolites. These results suggest that the altered expression of Hsps (especially Hsp56 and Hsp60) by E2 metabolites such as E2, $16{\alpha}$-OHE1 and 2-ME could be closely linked to their mitogenic action.

Keywords

Acknowledgement

Grant : Chemical Genomics Research Project

Supported by : MOST (Ministry of Science and Technology), Korea Research Institute of Chemical Technology

References

  1. Balabanov, S., Zimmermann, U., Protzel, C., Scharf, C., Klebingat, K. J., et al. (2001) Tumor-related enzyme alterations in the clear cell type of human renal cell carcinoma identified by two-dimensional gel electrophoresis. Eur. J. Biochem. 268, 5977-5980 https://doi.org/10.1046/j.0014-2956.2001.02546.x
  2. Beliakoff, J. and Whitesell, L. (2004) Hsp90: an emerging target for breast cancer therapy. Anticancer Drugs 15, 651-662 https://doi.org/10.1097/01.cad.0000136876.11928.be
  3. Cappello, F., Bellafiore, M., Palma, A., David, S., Marciano, V., et al. (2003) 60 Kda chaperonin (HSP60) is over-expressed during colorectal carcinogenesis. Eur. J. Histochem. 47, 105-110
  4. Cappello, F., Bellafiore, M., Palma, M. A., Marciano, V., Martorana, G., et al. (2002-2003) Expression of 60-kDa heat shock protein increases during carcinogenesis in the uterine exocervix. Pathobiology 70, 83-88 https://doi.org/10.1159/000067304
  5. Clemons, M. and Goss, P. (2001) Estrogen and the risk of breast cancer. N. Engl. J. Med. 344, 276-285 https://doi.org/10.1056/NEJM200101253440407
  6. Cook, R. M., Franklin, W. A., Moore, M. D., Johnson, B. E., and Miller, Y. E. (1998) Mutational inactivation of aminoacylase- I in a small cell lung cancer cell line. Genes Chromosomes Cancer 21, 320-325 https://doi.org/10.1002/(SICI)1098-2264(199804)21:4<320::AID-GCC5>3.0.CO;2-0
  7. Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z., and Nardai, G. (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther. 79, 129-168 https://doi.org/10.1016/S0163-7258(98)00013-8
  8. Curmi, P. A., Nogues, C., Lachkar, S., Carelle, N., Gonthier, M. P., et al. (2000) Overexpression of stathmin in breast carcinomas points out to highly proliferative tumours. Br. J. Cancer 82, 142-150 https://doi.org/10.1054/bjoc.1999.0891
  9. Darbre, P., Yates, J., Curtis, S., and King, R. J. (1983) Effect of estradiol on human breast cancer cells in culture. Cancer Res. 43, 349-354
  10. Ernst, M., Schmid, C., and Froesch, E. R. (1989) Phenol red mimics biological actions of estradiol: enhancement of osteoblast proliferation in vitro and of type I collagen gene expression in bone and uterus of rats in vivo. Steroid Biochem. 33, 907-914 https://doi.org/10.1016/0022-4731(89)90239-2
  11. Fishman, J. and Martucci, C. (1980) Biological properties of 16 alpha-hydroxyestrone: implications in estrogen physiology and pathophysiology. Clin. Endocrinol Metab. 51, 611-615 https://doi.org/10.1210/jcem-51-3-611
  12. Fishman, J., Schneider, J., Hershcope, R. J., and Bradlow, H. L. (1984) Increased estrogen-16 alpha-hydroxylase activity in women with breast and endometrial cancer. Steroid Biochem. 20, 1077-1081 https://doi.org/10.1016/0022-4731(84)90021-9
  13. Flouriot, G., Brand, H., Denger, S., Metivier, R., Kos, M., et al. (2000) Identification of a new isoform of the human estrogen receptor-${\alpha}$ (hER-${\alpha}$) that is encoded by distinct transcripts and that is able to repress hER-alpha activation function 1. EMBO J. 19, 4688-4700 https://doi.org/10.1093/emboj/19.17.4688
  14. Frydman, J. and Hart, F. U. (1996) Principles of chaperoneassisted protein folding: differences between in vitro and in vivo mechanisms. Science 272, 1497-1502 https://doi.org/10.1126/science.272.5267.1497
  15. Gupta, M., McDougal, A., and Safe, S. (1998) Estrogenic and antiestrogenic activities of 16alpha- and 2-hydroxy metabolites of 17beta-estradiol in MCF-7 and T47D human breast cancer cells. J. Steroid Biochem. Mol. Biol. 67, 413-419 https://doi.org/10.1016/S0960-0760(98)00135-6
  16. Horwitz, K. B. and McGuire, W. L. (1978) Estrogen control of progesterone receptor in human breast cancer. Correlation with nuclear processing of estrogen receptor. J. Biol. Chem. 253, 2223-2228
  17. Hwang, T. S., Han, H. S., Choi, H. K., Lee, Y. J., Kim, Y. J., et al. (2003) Differential, stage-dependent expression of Hsp70, Hsp110 and Bcl-2 in colorectal cancer. J. Gastroenterol. Hepatol. 18, 690-700 https://doi.org/10.1046/j.1440-1746.2003.03011.x
  18. Isaacs, J. S., Xu, W., and Neckers, L. (2003) Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3, 213-217 https://doi.org/10.1016/S1535-6108(03)00029-1
  19. Kim, S. H., Lee, S., Kim, M. H., Kim, B. T., and Min, Y. K. (2005) Protein profiling and transcript expression levels of heat shock proteins in 17${\beta}$ -estradiol-treated human MCF-7 breast cancer cells. (submitted)
  20. Kumar, P., Mark, P. J., Ward, B. K., Minchin, R. F., and Ratajczak, T. (2001) Estradiol-regulated expression of the immunophilins cyclophilin 40 and FKBP52 in MCF-7 breast cancer cells. Biochem. Biophys. Res. Commun. 284, 219-225 https://doi.org/10.1006/bbrc.2001.4952
  21. Lewis, J. S., Thomas, T. J., Klinge, C. M., Gallo, M. A., and Thomas, T. (2001) Regulation of cell cycle and cyclins by 16alpha-hydroxyestrone in MCF-7 breast cancer cells. J. Mol. Endocrinol. 27, 293-307 https://doi.org/10.1677/jme.0.0270293
  22. Li, J. J. and Li, S. A. (1987) Estrogen carcinogenesis in Syrian hamster tissues: role of metabolism. Fed. Proc. 46, 1858-1863
  23. Liehr, J. G. and Ricci, M. J. (1996) 4-Hydroxylation of estrogens as marker of human mammary tumors. Proc. Natl. Acad. Sci. USA 93, 3294-3296
  24. Liehr, J. G., Fang, W. F., Sirbasku, D. A., and Ari-Ulubelen, A. (1986) Carcinogenicity of catechol estrogens in Syrian hamsters. J. Steroid Biochem. 24, 353-356 https://doi.org/10.1016/0022-4731(86)90080-4
  25. Lippert, T. H., Seeger, H., and Mueck, A. O. (2000) The impact of endogenous estradiol metabolites on carcinogenesis. Steroids 65, 357-369 https://doi.org/10.1016/S0039-128X(00)00101-X
  26. Lippert, C., Seeger, H., and Mueck, A. O. (2003) The effect of endogenous estradiol metabolites on the proliferation of human breast cancer cells. Life Sci. 72, 877-883 https://doi.org/10.1016/S0024-3205(02)02305-6
  27. Liu, Z. J. and Zhu, B. T. (2004) Concentration-dependent mitogenic and antiproliferative actions of 2-methoxyestradiol in estrogen receptor-positive human breast cancer cells. J. Steroid Biochem. Mol. Biol. 88, 265-275 https://doi.org/10.1016/j.jsbmb.2003.12.003
  28. Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}{\Delta}C}T$ method. Methods 25, 402-408 https://doi.org/10.1006/meth.2001.1262
  29. Lorenzo, J. (2003) A new hypothesis for how sex steroid hormones regulate bone mass. J. Clin. Invest. 111, 1641-1643 https://doi.org/10.1172/JCI18812
  30. McGuire, W. L., Horwitz, K. B., Chamness, G. C., and Zava, D. T. (1976) A physiological role for estrogen and progesterone in breast cancer. J. Steroid Biochem. 7, 875-882 https://doi.org/10.1016/0022-4731(76)90005-4
  31. Nardulli, A. M., Greene, G. L., O'Malley, B. W., and Katzenellenbogen, B. S. (1988) Regulation of progesterone receptor messenger ribonucleic acid and protein levels in MCF-7 cells by estradiol: analysis of estrogen's effect on progesterone receptor synthesis and degradation. Endocrinology 122, 935-944 https://doi.org/10.1210/endo-122-3-935
  32. Newbold, R. R. and Liehr, J. G. (2000) Induction of uterine adenocarcinoma in CD-1 mice by catechol estrogens. Cancer Res. 60, 235-237
  33. Oh, W. K. and Song, J. (2003) Cooperative interaction of Hsp40 and TPR1 with Hsp70 reverses Hsp70-HspBp1 complex formation. Mol. Cells 16, 84-91
  34. Peattie, D. A., Harding, M. W., Fleming, M. A., DeCenzo, M. T., Lippke, J. A., et al. (1992) Expression and characterization of human FKBP52, an immunophilin that associates with the 90-kDa heat shock protein and is a component of steroid receptor complexes. Proc. Natl. Acad. Sci. USA 89, 10974-10978
  35. Rogan, E. G., Badawi, A. F., Devanesan, P. D., Meza, J. L., Edney, J. A., et al. (2003) Relative imbalances in estrogen metabolism and conjugation in breast tissue of women with carcinoma: potential biomarkers of susceptibility to cancer. Carcinogenesis 24, 697-702 https://doi.org/10.1093/carcin/bgg004
  36. Rozen, S. and Skaletsky, H. J. (2000) Primer3 on the WWW for general users and for biologist programmers; in Bioinformatics Methods and Protocols: Methods in Molecular Biology, Krawetz, S. and Misener, S. (eds.), pp. 365-386, Humana Press, Totowa
  37. Schneider, J., Kinne, D., Fracchia, A., Pierce, V., Anderson, K. E., et al. (1982) Abnormal oxidative metabolism of estradiol in women with breast cancer. Proc. Natl. Acad. Sci. USA 79, 3047-3051
  38. Schumacher, G. and Neuhaus, P. (2001) The physiological estrogen metabolite 2-methoxyestradiol reduces tumor growth and induces apoptosis in human solid tumors. J. Cancer Res. Clin. Oncol. 127, 405-410 https://doi.org/10.1007/s004320000233
  39. Schutze, N., Vollmer, G., Tiemann, I., Geiger, M., and Knuppen, R. (1993) Catecholestrogens are MCF-7 cell estrogen receptor agonists. J. Steroid Biochem. Mol. Biol. 46, 781-789 https://doi.org/10.1016/0960-0760(93)90319-R
  40. Seegers, J. C., Aveling, M. L., Van Aswegen, C. H., Cross, M., Koch, F., et al. (1989) The cytotoxic effects of estradiol-17 beta, catecholestradiols and methoxyestradiols on dividing MCF-7 and HeLa cells. J. Steroid Biochem. 32, 797-809 https://doi.org/10.1016/0022-4731(89)90455-X
  41. Soufla, G., Porichis, F., Sourvinos, G., Vassilaros, S., and Spandidos, D. A. (2005) Transcription deregulation of VEGF, FGF2, TGF-${\betha}$ 1, 2, 3 and cognate receptors in breast tumorigenesis. Cancer Lett. [Epud ahead of print]
  42. Swaneck, G. E. and Fishman, J. (1988) Covalent binding of the endogenous estrogen 16 alpha-hydroxyestrone to estradiol receptor in human breast cancer cells: characterization and intranuclear localization. Proc. Natl. Acad. Sci. USA 85, 7831-7835
  43. Wang, X. Y., Chen, X., Manjili, M. H., Repasky, E., Henderson, R., et al. (2003) Targeted immunotherapy using reconstituted chaperone complexes of heat shock protein 110 and melanoma- associated antigen gp100. Cancer Res. 63, 2553-2560
  44. Ward, B. K., Mark, P. J., Ingram, D. M., Minchin, R. F., and Ratajczak, T. (1999) Expression of the estrogen receptorassociated immunophilins, cyclophilin 40 and FKBP52, in breast cancer. Breast Cancer Res. Treat. 58, 267-280