Influences of pH and Concentration of Surfactant on the Electrokinetic Behavior of a Nano-Ceria Slurry in Shallow Trench Isolation Chemical Mechanical Polishing

Kang, Hyun-Goo;Katoh, Takeo;Park, Jea-Gun;Paik, Un-Gyu;Park, Hyung-Soon

  • Published : 20051000

Abstract

If the polishing performance in shallow trench isolation chemical mechanical polishing (STI-CMP) is to be improved, it is necessary to minimize silicon-nitride film loss and maintain a high removal rate of silicon-dioxide film where widening the process window. We have investigated how the pH and the concentration of the surfactant in a ceria slurry affect the silicon-nitride film loss and silicon-dioxide-to-silicon-nitride removal selectivity in the STI-CMP process. We found that the removal rate of silicon-dioxide film markedly decreased as the surfactant concentration was increased, regardless of the surfactants pH. However, the removal rates of silicon-nitride film for all slurries markedly decreased and very quickly saturated at a lower surfactant pH with increasing surfactant concentration. In addition, with an increase in the surfactant concentration, especially for the very diluted region (less than 0.3 wt%), slurries whose surfactants had a medium or the highest surfactant pH showed higher removal rates of the silicon-nitride film than did the slurry whose surfactant had the lowest surfactant pH.

Keywords

References

  1. S. Wolf, Silicon Processing for the VLSI Era, Vol. 2 - Process Integration (Lattice Press, Sunset Beach CA, 1990) Vol. 2, p. 24
  2. T. Katoh, B. G. Ko, J. H. Park, H. C. Yoo and J. G. Park, U. G. Paik, J. Korean Phys. Soc. 40, 180 (2002)
  3. M. Quirk and J. Serda, Semiconductor Manufacturing Technology (Prentice Hall, New Jersey Columbus, 2001), p. 199
  4. H. Nojo, M. Kodera and R. Nakata, Proc. IEEE idem, (San Francisco, CA, 1996), p. 349
  5. T. Hoshino, Y. Kurata, Y. Terasaki and K. Susa, J. Non-Crystalline Solids 283, 129 (2001) https://doi.org/10.1016/S0022-3093(01)00364-7
  6. W. M. Lee, T. Katoh, H. G. Kang, J. G. Park, U. Paik and H. Jeon, J. Korean Phys. Soc. 44, 796 (2004)
  7. Y. Homma, T. Furusawa, H. Morishima and H. Sato, Solid-State Electron. 41, 1005 (1997) https://doi.org/10.1016/S0038-1101(97)00014-2
  8. S. K. Kim, S. K. Lee, U. Paik, T. Katoh and J. G. Park, J. Mater. Res. 18, 2163 (2003) https://doi.org/10.1557/JMR.2003.0302
  9. H. G. Kang, T. Katoh, M. Y. Lee, H. S. Park, U. Paik and J. G. Park, Jpn. J. Appl. Phys. 43, L1060 (2004)
  10. J. G. Park, H. I. Jung, T. Katoh, U. G. Paik and H. Jeon, J. Korean. Phys. Soc. 39, 296 (2001)
  11. K. Hirai, H. Ohtsuki, T. Ashizawa and Y. Kurata, Hitachi Chemical Tech. Report No. 35, 17 (2000)
  12. Y. Tateyama, T. Hirano, T. Ono, N. Miyashita and T. Yoda, Proc. Int. Symp. Chemical Mecanical Planarization IV, Phoenix, 2000 (Electrochemical Society, Pennington, 2000), p. 297
  13. V. A. Hackley and J. Texter, Ultrasonic and Dielectric Characterization Techniques for Suspended Particulates, ed. V. A. Hackley and U. Paik, (American Ceramic Society, Westerville, 1998), p. 191
  14. A. Philipossian and M. Hanazono, Tribology and Fluid Dynamics Characterization of Cerium Oxide Slurries, www.innovative-planarization.com, 2001
  15. H. G. Kang, T. Katoh, W. M. Lee, U. Paik and J. G. Park, Jpn. J. Appl. Phys. 43, L1 (2004) https://doi.org/10.1143/JJAP.43.1
  16. F. W. Billmeyer Jr., in, Textbook of Polymer Science, (Wiley Interscience, New York, 1998), p. 145
  17. R. Hunter, Introduction to Modern Colloid Science (Oxford University Press, New York, 1993),p. 5
  18. J. S. Reed, Principles of Ceramics Processing Second Edition (Wiley Interscience, New York, 1995),p. 323
  19. G. B. Basim and B. M. Moudgil, J. Colloid Interface Sci. 256, 137 (2002) https://doi.org/10.1006/jcis.2002.8352
  20. V. A. Hackley, J. Am. Ceram. Soc. 80, 2315 (1997)
  21. U. Paik, V. A. Hackley and H. W. Lee, J. Am. Ceram. Soc. 82, 833 (1999)
  22. J. H. Jean and H. R. Wang, J. Am. Ceram. Soc. 83, 277 (2000)