Development of the Surface Forest Fire Behavior Prediction Model Using GIS

GIS를 이용한 지표화 확산예측모델의 개발

  • Received : 2005.09.21
  • Accepted : 2005.11.08
  • Published : 2005.12.31

Abstract

In this study, a GIS model to simulate the behavior of surface forest fires was developed on the basis of forest fire growth prediction algorithm. This model consists of three modules for data-handling, simulation and report writing. The data-handling module was designed to interpret such forest fire environment factors as terrain, fuel and weather and provide sets of data required in analyzing fire behavior. The simulation module simulates the fire and determines spread velocity, fire intensity and burnt area over time associated with terrain slope, wind, effective humidity and such fuel condition factors as fuel depth, fuel loading and moisture content for fire extinction. The module is equipped with the functions to infer the fuel condition factors from the information extracted from digital vegetation map sand the fuel moisture from the weather conditions including effective humidity, maximum temperature, precipitation and hourly irradiation. The report writer has the function to provide results of a series of analyses for fire prediction. A performance test of the model with the 2002 Chungyang forest fire showed the predictive accuracy of 61% in spread rate.

이 연구에서는 지표화 중심의 산불확산예측 알고리즘을 기반으로 GIS 환경에서 운용이 가능한 지표화 확산예측모델을 개발하였다. 이 모델은 지형, 연료, 기상 등 산불환경인자를 분석하고 입력하는 부분과 시간에 따라 확산속도, 화선에서의 산불강도, 연소면적을 예측하는 지표화 확산예측 부분, 마지막으로 예측결과를 사용자에게 제시하는 출력 부분으로 구성되었다. 산불확산속도를 계산하기 위해서 산불행동에 영향을 미치는 산불환경인자중에서 지형인자는 경사, 기상인자는 풍속, 풍향, 실효습도를 고려하였다. 또한 연료인자는 수치임상도를 이용하여 연료깊이, 연료량, 소화습도를 계산할 수 있는 연료모듈을 개발하여 입력되도록 하였다. 연료습도는 실효습도, 최고온도, 강수량, 일일 적산량의 함수관계로 추정하였다. 모델을 2002년 청양에서 발생한 산불에 적용한 결과 확산속도에 대해 61%의 일치도를 보였다.

Keywords

References

  1. 김응식, 이시영, 임효재, 김홍, 송종훈, 김수영. 1998. 유동장 해석을 통한 산불확산예측 프로그램의 개발. 한국임학회지 87(4): 528-534
  2. 이병두, 정주상, 김형호, 이시영. 2001. GIS 응용에 의한 2000년 삼척 산불의 확산속도 분석. 한국임학회지 90(6) 781-787
  3. 이병두, 정주상, 이사영. 2002. GIS 응용을 위한 산불확산예측 알고리즘의 개발. 한국임학회지 91(6): 812-819
  4. 이시영. 1990. 환경인자가 산불의 온도 및 진행속도에 미치는 영향. 동국대학교 석사학위논문. pp. 104
  5. 이시영, 이봉수, 임주훈 1997 습도측정봉을 이용한 산불 발생위험율 예측. 산림과학논문집 55: 150-157
  6. 정연하, 이시영, 염육철, 여운흥. 1989. 산화위험율 예측에 관한 연구. 임업연구원 연구보고 38: 117-123
  7. 정주상, 이병두, 김형호. 2002. GIS 및 판별분석에 의한 삼척산불지역의 소나무임분 피해도 추정. 한국임학회지 91(3): 355-361
  8. Andrews, P.L. and L.P. Queen. 2001. Fire modeling and information system technology. International Journal of Wildland Fire 2001(10): 343-352
  9. Anderson, D.H., E.A. Catchpole, N.J. de Mestre and T. Parks. 1982. Modelling the spread of grass fires. Journal Australian Mathematical Society 23: 451-466 https://doi.org/10.1017/S0334270000000394
  10. Anderson, H.E. 1983. Predicting wind-driven wildland fire size and shape. USDA Forest Service. Research Paper. INT 305
  11. Ball, G.L. and D.P. Guertin. 1992. Simulation of fire growth. International Journal of Wildland Fire 2: 47-54 https://doi.org/10.1071/WF9920047
  12. Burgan, R.E. and R.C. Rothermel. 1984. BEHAVE: Fire behavior prediction and fuel modeling system. USDA Forest Service. General Technical Report. INT-167
  13. Feunekes, U. 1991. Error analysis in fire simulation models. Master degree thesis, University of New Brunswick, Canada
  14. French, I.A. 1992. Visualization techniques for the computer simulation of bushfires in tow dimensions. Master degree Thesis, University of New South Wales, Australia
  15. Finney, M.A. 1998. FARSITE: Fire Area Simulator-Model Development and Evaluation. Rocky Mountain Research Station. pp. 47
  16. Lee, S.Y., J.H. Lim and J.S. Oh. 1999. Analysis of Spread rate and Pattern of Forest Fire in Kosung, Korea. Proceedings of the 3rd International Conference on Long-Term Ecological Research in the East Asia-Pacific Region. 160-167
  17. Linn, R., J. Winterkamp, and J.J. Colman, 2005. Modeling interactions between fire and atmosphere in discrete element fuel beds. International Journal of Wildland Fire 14: 37-48 https://doi.org/10.1071/WF04043
  18. Perry, G.L.W. 1998. Current approaches to modelling the spread of wildland fire: a review. Progress in physical Geography 22(2): 222-245
  19. Richards, G.D. 1990. An elliptical growth model of forest fire fronts and its numerical solution. International Journal Numerical Methods Engineering 30: 1130-1149
  20. Richards, G.D. 1995. A general mathematical framework for modelling tow-dimensional wildland tire spread. International Journal of Wildland Fire 5(2): 63-72 https://doi.org/10.1071/WF9950063
  21. Richards, G.D. 2000. The mathematical modelling and computer simulation of wildland fire perimeter growth over a 3-dimensional surface. International Journal of Wildland Fire 9(3): 213-221 https://doi.org/10.1071/WF00019
  22. Rothermel, R.C. 1972. A mathematical model for prediction fire spread in wildland fuels. Research Paper TNT-115 (Ogden, UT: USDA Forest Service, Intermountain Research Station). pp. 40
  23. Stephen J.P., L.A. Patricia and D.L. Richard. 1996. Introduction to wildland fire. 2nd ed. John Wiley & Sons. New York, U.S.A. pp. 769
  24. Stocks, B.J., B.D. Lawson, M.E. Alexander, C.E. Van Wagner, R.S. McAlpine, T.J. Lynham and D.E. Dube. 1989. The Canadian Forest Fire Danger Rating System. The Forestry Chronicle 65(6): 450-457
  25. Vasconcelos, M.J. and D.P. Guertin. 1992. Simulation of fire growth. International Journal of Wildland Fire 2: 87-96 https://doi.org/10.1071/WF9920087
  26. von Neumann, J. 1966. Theory of self-reproducing Automata. University of Illinois. Urbana