DOI QR코드

DOI QR Code

Biochemical and Molecular Insights into Bile Salt Hydrolase in the Gastrointestinal Microflora - A Review -

  • Kim, Geun-Bae (Department of Food Science and Agricultural Chemistry, McGill University) ;
  • Lee, Byong H. (Department of Food Science and Agricultural Chemistry, McGill University)
  • Received : 2005.04.11
  • Accepted : 2005.05.07
  • Published : 2005.10.01

Abstract

Bile salt deconjugation is the most biologically significant reaction among the bacterial alterations of bile acids in the gastrointestinal tract of human and animal. The responsible enzyme, bile salt hydrolase (BSH), catalyzes the hydrolysis of glycineand/or taurine-conjugated bile salts into amino acid residues and deconjugated bile acids. Herein we review current knowledge on the distribution of BSH activity among various microorganisms with respect to their biochemical and molecular characteristics. The proposed physiological impact of BSH activity on the host animal as well as on the BSH-producing bacterial cells is discussed. BSH activity of the probiotic strains is examined on the basis of BSH hypothesis, which was proposed to explain cholesterol-lowering effects of probiotics. Finally, the potential applications of BSH research are briefly discussed.

Keywords

References

  1. Anderson, J. W. and S. E. Gilliland. 1999. Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J. Am. College Nutr. 18:43-50.
  2. Aries, V. and M. J. Hill. 1970a. Degradation of steroids by intestinal bacteria. I. Deconjugation of bile salts. Biochim. Biophys. Acta 202:526-534.
  3. Aries, V. and M. J. Hill. 1970b. Degradation of steroids by intestinal bacteria. II. Enzymes catalyzing the oxidoreduction of the $3{\alpha}$-, $7{\alpha}$-, and $12{\alpha}$-hydroxyl groups in cholic and the dehydroxylation of the $7{\alpha}$-hydroxyl group. Biochim. Biophys. Acta 202:535-543.
  4. Baron, S. F. and P. B. Hylemon. 1997. Biotransformation of bile acids, cholesterol, and steroid hormones. In: Gastrointestinal Microbiology, Vol. I, Gastrointestinal Ecosystems and Fermentations, (Ed. R. I. Mackie and B. A. White), International Thomson Publ., New York, pp. 470-510.
  5. Bateup, J. M., M. A. McConnell, H. F. Jenkinson and G. W. Tannock. 1995. Comparison of Lactobacillus strains with respect to bile salt hydrolase activity, colonization of the gastrointestinal tract, and growth rate of the murine host. Appl. Environ. Microbiol. 61:1147-1149.
  6. Batta, A. K., G. Salen and S. Shefer. 1984. Substrate specificity of cholylglycine hydrolase for the hydrolysis of bile acid conjugates. J. Biol. Chem. 259:15035-15039.
  7. Batta, A. K., G. Salen, R. Arora, S. Shefer, M. Batta and A. Person. 1990. Side chain conjugation prevents bacterial 7-dehydroxylation of bile acids. J. Biol. Chem. 265:10925-10928.
  8. Canzi, E., E. Maconi, F. Aragozzini and A. Ferrari. 1989. Cooperative 3-epimeization of chenodoexycholic acid by Clostridium innocuum and Eubacterium lentum. Curr. Microbiol. 18:97-104.
  9. Chikai, T., H. Nakao and K. Uchida. 1987. Deconjugation of bile acids by human intestinal bacteria implanted in germ-free rats. Lipids 22:669-671.
  10. Christiaens, H., R. J. Leer, P. H. Pouwels and W. Verstraete. 1992. Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay. Appl. Environ. Microbiol. 58:3792-3798.
  11. Cole, C. B. and R. Fuller. 1984. Bile acid deconjugation and attachment of chicken gut bacteria: their possible role in growth depression. Br. Poult. Sci. 25:227-231.
  12. Coleman, J. P. and L. L. Hudson. 1995. Cloning and characterization of a conjugated bile acid hydrolase gene from Clostridium perfringens. Appl. Environ. Microbiol. 61:2514-2520.
  13. Corzo, G. 1997. Bile salt deconjugation by three strains of Lactobacillus acidophilus and characterization of their bile salt hydrolase. Doctoral Thesis, Oklahoma State University, USA.
  14. Corzo, G. and S. E. Gilliland. 1999a. Bile salt hydrolase activity of three strains of Lactobacillus acidophilus. J. Dairy Sci. 82:472-480.
  15. Corzo, G. and S. E. Gilliland. 1999b. Measurement of bile salt hydrolase activity from Lactobacillus acidophilus based on disappearance of conjugated bile salts. J. Dairy Sci. 82:466-471.
  16. Dashkevicz, M. P. and S. D. Feighner. 1989. Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl. Environ. Microbiol. 55:11-16.
  17. De Smet, I., P. De Boever and W. Verstraete. 1998. Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity. Br. J. Nutr. 79:185-194.
  18. De Smet, I., L. van Horde, N. De Saeyer, M. vande Woewtyne, and W. Verstraete. 1994. In vitro study of bile salt hydrolase (BSH) activity of BSH isogenic Lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity. Microbial Ecol. Health Dis. 7:315-329.
  19. De Smet, I., L. van Horde, M. van de Woestyne, H. Christiaens, and W. Verstraete. 1995. Significance of bile salt hydrolytic activities of lactobacilli. J. Appl. Bacteriol. 79:292- 301. https://doi.org/10.1111/j.1365-2672.1995.tb03140.x
  20. Dean, M., C. Cervellati, E. Casanova, M. Squerzanti, V. Lanzara, A. Medici, P. P. de Laureto and C. M. Bergamini. 2002. Characterization of cholylglycine hydrolase from a bileadapted strain of Xanthomonas maltophilia and its application for quantitative hydrolysis of conjugated bile salts. Appl. Environ. Microbiol. 68:3126-3128.
  21. Drasar, B. S. and M. J. Hill. 1974. Human intestinal flora. Academic Press, New York, pp. 103-123.
  22. du Toit, M., C. M. A. P. Franz, L. M. T. Dicks, U. Schillinger, P. Haberer, B. Warlies, F. Ahrens and W. H. Holzapfel. 1998. Characterization and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content. Int. J. Food Microbiol. 40:93-104. https://doi.org/10.1016/S0168-1605(98)00024-5
  23. Dussurget, O., D. Cabanes, P. Dehoux, M. Lecuit, C. Buchrieser, P. Glaser and P. Cossart. 2002. Listeria monocytogenes bile salt hydrolase is a virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol. 45:1095-1106. https://doi.org/10.1046/j.1365-2958.2002.03080.x
  24. Elkins, C. A. and D. C. Savage. 1998. Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100-100. J. Bacteriol. 180:4344-4349.
  25. Elkins, C. A., S. A. Moser and D. C. Savage. 2001. Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species. Microbiol. 147:3404-3412.
  26. Farkkila, M. and T. A. Miettinen. 1990. Lipid metabolism in bile acid malabsorption. Ann. Med. 22:5-13.
  27. Franz, C. M. A. P., I. Sepcht, P. Haberer and W. H. Holzapfel. 2001. Bile salt hydrolase activity of enterococci isolated form food: Screening and quantitative determination. J. Food Prot. 64:725-729.
  28. Gilliland, S. E. and M. L. Speck. 1977. Deconjugation of bile acids by intestinal lactobacilli. Appl. Environ. Microbiol. 33:15-18.
  29. Gopal-Srivastava, R. and P. B. Hylemon. 1988. Purification and characterization of conjugated bile salt hydrolase from Clostridium perfringens. J. Lipid. Res. 29:1079-1085.
  30. Grill, J. P., F. Schneider, J. Crociani and J. Ballongue. 1995. Purification and characterization of conjugated bile salt hydrolase from Bifidobacterium longum BB536. Appl. Environ. Microbiol. 61:2577-2582.
  31. Gustafsson, B. E., T. Midtvedt and A. Norman. 1966. Isolated fecal microorganisms capable of $7{\alpha}$-dehydroxylating bile acids. J. Exp. Med. 123:413-432.
  32. Hofmann, A. F. 1977. The enterohepatic circulation of bile acids in man. Clin. Gastroenterol. 6:3-24.
  33. Hofmann, A. F. and K. J. Mysels. 1992. Bile acid solubility and precipitation in vitro and in vivo: the role of conjugation, pH, and $Ca^{2+}$ ions. J. Lipid Res. 33:617-626.
  34. Kawamoto, K., I. Horibe and K. Uchida. 1989. Purification and characterization of a new hydrolase for conjugated bile acids, chenodeoxycholyltaurine, from Bacteroides vulgatus. J. Biochem. 106:1049-1053.
  35. Kleerebezem, M., J. Boekhorst, R. van Kranenburg, D. Molenaar, O. P. Kuipers, R. Leer, R. Tarchini, S. A. Peters, H. M. Sandbrink, M. W. E. J. Fiers, W. Stiekema, R. M. Klein Lankhorst, P. A. Bron, S. M. Hoffer, M. N. Nierop Groot, R. Kerkhoven, M. de Vries, B. Ursing, W. M. de Vos and R. J. Siezen. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA. 100:1990-1995. https://doi.org/10.1073/pnas.0337704100
  36. Kobayashi, H. 1985. A proton-translocating ATPase regulates pH of the bacterial cytoplasm. J. Biol. Chem. 260:72-76.
  37. Lack, L. and I. M. Weiner. 1966. Intestinal bile salt transport: structure-activity relationship and other properties. Am. J. Physiol. 210:1142-1152.
  38. Leer, R. J., H. Christiaens, W. Verstraete, L. Peters, M. Posno and P. H. Pouwels. 1993. Gene disruption in Lactobacillus plantarum strain 80 by site-specific recombination: isolation of a mutant strain deficient in conjugated bile salt hydrolase activity. Mol. Gen. Genet. 239:269-272.
  39. Lundeen, S. and D. C. Savage. 1990. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100. J. Bacteriol. 172:4171-4177.
  40. Mallory, A., F. Kern, J. Smith and D. Savage. 1973. Patterns of bile acids and microflora in the human small intestine. I. Bile acids. Gastroenterol. 64:26-33.
  41. Marteau, P., M. F. Gerhardt, A. Myara, E. Bouvier, F. Trivin and J. C. Rambaud. 1995. Metabolosm of bile salts by alimentary bacteria during transit in the human small intestine. Microbial Ecol. Health Dis. 8:151-157.
  42. Masuda, N. 1981. Deconjugation of bile salts by Bacteroides and Clostridium. Microbiol. Immunol. 25:1-11.
  43. Midtvedt, T. 1974. Microbial bile acid transformation. Am. J. Clin. Nutr. 27:1341-1348.
  44. Moore, W. E. C. and L. V. Holdeman. 1974. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl. Microbiol. 27:961-979.
  45. Moser, S. A. and D. C. Savage. 2001. Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Appl. Environ. Microbiol. 67:3476-3480.
  46. Nair, P. P., M. Gordon and J. Reback. 1967. The enzymatic cleavage of the carbon-nitrogen bond in $3{\alpha}$, $7{\alpha}$, $12{\alpha}$-trihydroxy-$5{\beta}$-cholan-24-oylglycine. J. Biol. Chem. 242:7-11.
  47. NCBI Microbial Genomes Annotation Project. 2003a. Lactobacillus gasseri Lgas_3, whole genome shotgun sequence. Direct submission to the GenBank/EMBL/DDBJ. Accession number NZ_AAAO02000005.
  48. Northfield, T. G. and I. McColl. 1973. Postprandial concentrations of free and conjugated bile acids sown the length of the normal human small intestine. Gut. 14:513-518.
  49. Paulsen I. T., L. Banerjei, G. S. Myers, K. E. Nelson, R. Seshadri, T. D. Read, D. E. Fouts, J. A. Eisen, S. R. Gill, J. F. Heidelberg, H. Tettelin, R. J. Dodson, L. Umayam, L. Brinkac, M. Beanan, S. Daugherty, R. T. DeBoy, S. Durkin, J. Kolonay, R. Madupu, W. Nelson, J. Vamathevan, B. Tran, J. Upton, T. Hansen, J. Shetty, H. Khouri, T. Utterback, D. Radune and C. M. Fraser. 2003. Role of mobile DNA in the evolution of vancomycinresistant Enterococcus faecalis. Sci. 299:2071-2074.
  50. Pridmore, R. D., B. Berger, F. Desiere, D. Vilanova, C. Barretto, A. C. Pittet, M. C. Zwahlen, M. Rouvet, E. Altermann, R. Barrangou, B. Mollet, A. Mercenier, T. Klaenhammer, F. Arigoni and M. A. Schell. 2004. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc. Natl. Acad. Sci. USA. 101:2512-2517.
  51. Rodriguez, E., J. L. Arques, R. Rodriguez, M. Nunez and M. Medina. 2003. Reuterin production by lactobacilli isolated from pig faeces and evaluation of probiotic traits. Lett. Appl. Microbiol. 37:259-263.
  52. Russell, W. M. and T. R. Klaenhammer. 2001. Identification and cloning of gusA, encoding a new beta-glucuronidase from Lactobacillus gasseri ADH. Appl. Environ. Microbiol. 67:1253-1261.
  53. Saavedra, L., M. P. Taranto, F. Sesma and G. F. de Valdez. 2003. Homemade traditional cheeses for the isolation of probiotic Enterococcus faecium strains. Int. J. Food Microbiol. 88:241-245.
  54. Salminen, S., E. Isolauri and E. Salminen. 1996. Clinical uses of probiotics for stabilizing the gut mucosal barrier: Successful strains for future challenges. Antonie van Leeuwenhoek 70:347-358.
  55. Savage, D. C., S. G. Lundeen and L. T. O’Connor. 1977. Microbial ecology of the gastrointestinal tract. Ann. Rev. Microbiol. 31:107-133.
  56. Savage, D. C. and S. A. Moser. 1999. Lactobacillus acidophilus putative bile salt hydrolase operon, complete sequence. Direct submission to the Genbank/EMBL/DDBJ. Accession no. AF091248
  57. Schell, M. A., M. Karmirantzou, B. Snel, D. Vilanova, B. Berger, G. Pessi, M. C. Zwahlen, F. Desiere, P. Bork, M. Delley, R. D. Pridmore and F. Arigoni. 2002. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. USA. 99:14422-144227.
  58. Sherwood, L. G. and S. Tabaqchali. 1969. Bacteria, bile, and the small bowel. Gut 10:963-972. https://doi.org/10.1136/gut.10.12.963
  59. Shimizu, T., K. Ohtani, H. Hirakawa, K. Ohshima, A. Yamashita, T. Shiba, N. Ogasawara, M. Hattori, S. Kuhara and H. Hayashi. 2002. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl. Acad. Sci. USA. 99:996-1001.
  60. Stellwag, E. J. and P. B. Hylemon. 1976. Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis. Biochim. Biophys. Acta 452:165-176.
  61. Tanaka, H., K. Doesburg, T. Iwasaki and I. Mierau. 1999. Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 82:2530-2535.
  62. Tanaka, H., H. Hashiba, J. Kok and I. Mierau. 2000. Bile salt hydrolase of Bifidobacterium longum-Biochemical and genetic characterization. Appl. Environ. Microbiol. 66:2502-2512.
  63. Tanida, N., Y. Hikdsa, Y. Shimoyama and K. D. R. Setchell. 1984. Comparison of faecal bile acid profiles between patients with adenomatous polyps of the large bowel and healthy subjects in Japan. Gut 25:824-832.
  64. Tannock, G. W., J. M. Bateup and H. F. Jenkinson. 1997. Effect of sodium taurocholate on the in vitro growth of lactobacilli. Microbiol. Ecol. 33:163-167.
  65. Tannock, G. W., M. P. Dashkevicz and S. D. Feighner. 1989. Lactobacilli and bile salt hydrolase in the murine intestinal tract. Appl. Environ. Microbiol. 55:1848-1851.
  66. van der Meer, R., D. S. M. L. Termont and H. T. de Vries. 1991. Differential effects of calcium ions and calcium phosphate on cytotoxicity of bile acids. Am. J. Physiol. 260:G142-147.
  67. Van Eldere, J., J. Robben, G. de Pauw, R. Merckx and H. Eyssen. 1988. Isolation and identification of intestinal steroiddesulfating bacteria from rats and humans. Appl. Environ. Microbiol. 54:2112-2117.
  68. van Faassen, A., J. Bol, W. van Dokkum, N. A. Pikaar, T. Ockhuizen and R. J. J. Hermus. 1987. Bile acids, neutral steroids and bacteria in faeces as affected by a mixted, a lactoovovegetarian and a vegan diet. Am. J. Clin. Nutr. 46:962-967.
  69. Wijaya, A., A. Herrmann, H. Abriouel, I. Specht, N. M. K. Yousif, W. H. Holzapfel and C. M. A. P. Franz. 2003. Enterococcus faecium bile salt hydrolase (bsh) gene, complete cds. Direct submission to the Genbank/EMBL/DDBJ. Accession number AY260046.

Cited by

  1. Characterization of the smallest dimeric bile salt hydrolase from a thermophile Brevibacillus sp. vol.13, pp.2, 2009, https://doi.org/10.1007/s00792-008-0224-0
  2. Probiotic Bile Salt Hydrolase: Current Developments and Perspectives vol.162, pp.1, 2010, https://doi.org/10.1007/s12010-009-8738-1
  3. Identification of Lactobacillus strains from breast-fed infant and investigation of their cholesterol-reducing effects vol.27, pp.10, 2011, https://doi.org/10.1007/s11274-011-0710-x
  4. PF01 vol.114, pp.1, 2012, https://doi.org/10.1111/jam.12027
  5. Gene Analysis vol.24, pp.1, 2014, https://doi.org/10.1159/000354316
  6. Cloning and analysis of bile salt hydrolase genes from Lactobacillus plantarum CGMCC No. 8198 vol.36, pp.5, 2014, https://doi.org/10.1007/s10529-013-1434-9
  7. Periplasmic Export of Bile Salt Hydrolase in Escherichia coli by the Twin-Arginine Signal Peptides vol.177, pp.2, 2015, https://doi.org/10.1007/s12010-015-1755-3
  8. Bacterial bile salt hydrolase: an intestinal microbiome target for enhanced animal health vol.17, pp.02, 2016, https://doi.org/10.1017/S1466252316000153
  9. Characterization of Bile Salt Hydrolase from Lactobacillus gasseri FR4 and Demonstration of Its Substrate Specificity and Inhibitory Mechanism Using Molecular Docking Analysis vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01004
  10. Comparative study of probiotic effects of Lactobacillus and Bifidobacteria strains on cholesterol levels, liver morphology and the gut microbiota in obese mice vol.8, pp.4, 2017, https://doi.org/10.1007/s13167-017-0117-3
  11. Short communication: Improving the activity of bile salt hydrolases in Lactobacillus casei based on in silico molecular docking and heterologous expression vol.100, pp.2, 2017, https://doi.org/10.3168/jds.2016-11720
  12. sp. from the Water of Cassava’s Fermentation for Selection as Probiotics vol.32, pp.1, 2018, https://doi.org/10.1080/08905436.2017.1413984
  13. Improvement of broiler meat quality due to dietary inclusion of soybean oligosaccharide derived from soybean meal extract vol.102, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/102/1/012009
  14. GD2 of Human Origin vol.32, pp.3, 2018, https://doi.org/10.1080/08905436.2018.1507911
  15. Bile salt hydrolases: Structure and function, substrate preference, and inhibitor development vol.27, pp.10, 2018, https://doi.org/10.1002/pro.3484
  16. Screening of Indigenous Strains of Lactic Acid Bacteria for Development of a Probiotic for Poultry vol.21, pp.10, 2005, https://doi.org/10.5713/ajas.2008.80081
  17. Molecular Characterization of Bile Salt Hydrolase from Bifidobacterium animalis subsp. lactis Bi30 vol.21, pp.8, 2005, https://doi.org/10.4014/jmb.1103.03028
  18. Protective Effects of a Novel Probiotic Strain of Lactobacillus plantarum JSA22 from Traditional Fermented Soybean Food Against Infection by Salmonella enterica Serovar Typhimurium vol.25, pp.4, 2005, https://doi.org/10.4014/jmb.1501.01006
  19. Probiotics and the BSH-related cholesterol lowering mechanism: a Jekyll and Hyde scenario vol.35, pp.3, 2005, https://doi.org/10.3109/07388551.2014.889077
  20. Construction of R16F and D19L mutations in the loop I of bile salt hydrolase (BSH) enzyme fromLactobacillus plantarumB14 and structural and functional analysis of the mutant BSHs vol.33, pp.2, 2005, https://doi.org/10.1080/08905436.2019.1570853
  21. The association between gut microbiota development and maturation of intestinal bile acid metabolism in the first 3 y of healthy Japanese infants vol.11, pp.2, 2005, https://doi.org/10.1080/19490976.2019.1650997
  22. Gut microbiota composition and metabolomic profiles of wild and captive Chinese monals ( Lophophorus lhuysii ) vol.17, pp.1, 2020, https://doi.org/10.1186/s12983-020-00381-x
  23. Bile Salt Hydrolases: At the Crossroads of Microbiota and Human Health vol.9, pp.6, 2005, https://doi.org/10.3390/microorganisms9061122
  24. Improving the Gut Microbiota with Probiotics and Faecal Microbiota Transplantation vol.15, pp.3, 2021, https://doi.org/10.22207/jpam.15.3.53