Degradation of 1,4-Dioxane by Advanced Oxidation Processes

고급산화법을 이용한 다이옥산 처리연구

Kim, Hyun-Seung;Jo, Sung-Hye;Yoon, Ki-Yong;Kim, II-Kyu
김현승;조성혜;윤기용;김일규

  • Published : 2005.09.30

Abstract

The feasibility of degradation of 1,4-dioxane by ultrasound technique has been demonstrated. The concentration of 1,4-dioxane in solution decreases exponentially over sonication time and increased energy intensity of ultrasound accelerates the degradation rate. That is, the rate of degradation increases with an increase of intensity proportionally and there is no optimum intensity. The addition of hydrogen peroxide in this ultrasonic process is considered an initiator to increase free radical concentrations in the solution. Only slightly degradation (<5%) of 1,4-dioxane was observed with the application of hydrogen peroxide alone, but the degradation of 1,4-dioxane was greatly enhanced by a combined method, ultrasonic irradiation with hydrogen peroxide. But it appears that an excess amount of hydrogen peroxide in the solution retards the decomposition of 1,4-dioxane. The reason for this effect may be due to that excessive hydrogen peroxide acts as a radical scavenger at high concentration. Also it is observed that the rate constant increases as the solution pH decreases. The acidic condition of the solution facilitates the degradation of 1,4-dioxane in presence of ultrasonic irradiation.

초음파를 단독으로 적용한 실험과 초음파 및 과산화수소를 동시에 적용한 실험에서 1,4-Dioxane의 분해 반응은 1차 반응을 따르는 것으로 나타났다. 1,4-Dioxane의 분해는 초음파 에너지의 강도가 커질수록 더 빠른 반응을 보이며 또한 에너지 강도가 증가함에 따라 1,4-Dioxane의 총 분해율이 증가함을 알 수 있다. 또한, 초음파나 과산화수소 하나만을 반응시켰을 때보다 두 가지를 결합하여 사용하였을 때 분해율이 더 높게 나타나고 분해반응도 더 빠르게 진행되는 것으로 나타났다. 그러나 초음파와 과산화수소를 결합한 방법에 있어서 과산화수소의 최적 투여량이 존재하며 과산화수소의 투여량이 너무 많을 경우 1,4-Dioxane의 분해를 오히려 저감시키는 현상이 나타난다. pH값이 4에서 11까지 변화하면서 반응속도상수와 총 분해율이 감소하는 것을 보여준다. 즉, pH가 낮은 산성 조건이 수용액 중 1,4-Dioxane의 분해 반응을 촉진하는 역할을 하는 것으로 추정된다.

Keywords

References

  1. Baker, K.H. and Herson D.S. (1994) Bioremediation, McGraw-Hill, Inc., New York, NY
  2. Clapp, L.W., Talarczyk, MR., Park, J.K., and Boyle, W.C. (1994) Performance comparison between activated sludge and fixed film processes for priority pollutant removals. Water Environment Research, Vol. 66, pp. 153-157 https://doi.org/10.2175/WER.66.2.9
  3. Dust, J.V. and Thompson, W.S. (1973) Pollution control in the wood processing industry. Part IV. biological methods of treating wastewater. Forest Prod. J., Vol. 23, pp. 59-65
  4. Feiler, H. (1980) Fate of priority pollutants in publicly owned treatment works. EPA-440/1-80-301, US EPA, Washington, DC
  5. Gibson, D.T. (1984) Microbial Degradation of Organic Compounds, Marcel Dekker, Inc., New York, NY
  6. Hallas, L.E. and Alexander, M. (1983) Microbial transformation of nitroaromatic compounds in sewage effluent. Appl. Environ. Microbiol., Vol. 45, pp. 1234-1239
  7. Hickman, GT. and Novak, J.T. (1984) Acclimation of activated sludge to pentachlorophenol. J. Water Pollut. Control Fed., Vol. 56, pp. 364-370
  8. Ho, P.C. (1986) Photooxidation of 2,4-dinitrotoluene in aqueous solution in the presence of hydrogen peroxide. Environ. Sci. Technol., Vol. 20, pp. 260-267 https://doi.org/10.1021/es00145a007
  9. Kim, I.-K., Huang, C.P., and Chiu, P.C. (2000a) Sonochemical decomposition of dibenzothiophene, Water Research, Vol. 35, No. 18, pp. 4370-4378 https://doi.org/10.1016/S0043-1354(01)00176-2
  10. Kim, I.-K., Jung, O.J., and Huang, C.P. (2000b) Decomposition of humic substances by a ultrasonic process, Bulletin of Korean Chemical Society, Vol. 22, No. 10, pp. 1093-1100
  11. Kim, I.-K., Jung, O.J., and Huang, C.P. (2002) Sonochemical reaction mechanism of a polycyclic aromatic sulfur hydrocarbon, Bulletin of Korean Chemical Society, Vol. 23, No. 7, pp. 990-994 https://doi.org/10.5012/bkcs.2002.23.7.990
  12. Kincannon, D.F., Stover, E.L., Nichols, V, and Medley D. (1983) Removal mechanism for toxic priority pollutants. J. Water Pollut. Control Fed., Vol. 55, pp. 157-162
  13. Kotronarou, A., Mills, G, and Hoffmann, M. (1992) Decomposition of parathion in aqueous solutions. Environ. Sci. Technol., Vol 26, No. 6, pp. 15-21
  14. LaGrega, et al., (1994) Hazardous Waste Management, McGraw-Hill Inc., NY
  15. Marinucci, A.C. and Bartha R. (1979) Biodegradation of 1,2,3-and 1,2,4-trichlorobenzene in soil and in liquid enrichment culture. Appl. Environ. Microbiol., Vol. 38, pp. 811-817
  16. National Industrial Chemicals Notification and Assessment Scheme (NICNAS) (1998) 1,4-Dioxane Priority Existing Chemical No. 7
  17. Sander, P., Wittich, R.M., Fortnagel, P., Wilkes, H., and Francke, W. (1991) Degradation of 1,2,4-trichloro- and 1,2,4,5-tetrachlo-robenzene by Pseudomonas strains. Appl. Environ. Microbiol., Vol. 57, pp. 1430-1435
  18. Stefan, M.I. and Bolton, J.R. (1998) Mechanism of the degradation of 1,4-Dioxane in dilute aqueous solution using the UV/hydro-gen peroxide process. Environ. Sci. Technol., Vol. 32, pp. 1588-1595 https://doi.org/10.1021/es970633m