Evaluating the mechanical properties of a CFRP tube under a lateral impact load using the split Hopkinson bar

Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki

  • Published : 20050000

Abstract

The mechanical properties of a CFRP tube, such as strength, stiffness, and energy absorption, are investigated under a lateral impact load using the split Hopkinson pressure bar. In order to obtain the load–displacement curve, a ramped wave was applied to the specimen. It was observed that the ramped incident wave can be used for evaluating the mechanical properties of a CRRP tube under a lateral impact load. The dependence of the displacement rate on the properties mentioned above is also discussed. The result indicates that crack propagation behavior strongly depends on the displacement rate.

Keywords

References

  1. T. Nishiwaki, A. Yokoyama, Z. Maekawa, H. Hamada and S. Mori, A quasi-three-dimensional lateral compressive analysis method for a composite cylinder, Compos. Struct. 32, 293–298 (1995).
  2. T. Nishiwaki, Designing of CFRP baseball bats, SAMPE Journal 38, 80–82 (2002).
  3. R. L. Sierakowski and S. K. Chaturvedi, in: Dynamic Loading and Characterization of Fiberreinforced Composites, Chapter 2, John Wiley (1997).
  4. S. N. Kakarala and J. L. Roche, Experimental comparisons of several impact test methods, ASTM STP 936 (1986).
  5. E. D. H. Davies and S. C. Hunter, The dynamic compression testing of solids by the method of the split Hopkinson pressure bar, J. Mech. Phys. Solids 11, 155–179 (1963).
  6. K. Kobayashi, Y. Tanabe and T. Hara, Mechanical behavior of bovine trabecular bone subjected to impact compressive load, Trans. Jpn. Soc. Mech. Eng. A 63, 160–166 (1997).
  7. N. Takeda, L. Wan, M. Hiramatsu and J. Yuan, Characterization of effects of strain rate and temperature on impact compressive damage progress of glass fiber reinforced composites, Trans. Jpn. Soc. Mech. Eng. A 63, 134–139 (1997).
  8. C. K. H. Dharan and F. E. Hauser, Determination of stress-strain characteristics at very high strain rates, Exp. Mech. 10, 370 (1970).
  9. Y. Yokoyama, Impact tension and compression testing of ductile cast iron with split Hopkinson bar, J. Soc. Mater. Sci. Japan 45, 785–791 (1996).
  10. K. F. Graff, Wave Motion in Elastic Solids, Dover Publications (1991).
  11. T. Fukuda, T. Fujii, M. Miki and H. Yoshida, J. Soc. Mater. Japan 28, 1193 (1979).
  12. Y. Yamauchi, T. Kurokawa and T. Kusaka, Estimation of dynamic interlaminar fracture toughness of CFRP by ENF test using SHPB method, J. Soc. Mater. Sci. Japan 42, 1445–1451 (1993).
  13. T. Kusaka, T. Kurokawa and Y. Yamauchi, Strain rate dependence of mode II interlaminar fracture toughness of unidirectional CF/Epoxy composite laminates, J. Soc. Mater. Sci. Japan 43, 445–450 (1994).
  14. K. Ogawa, A. Kuraishi, T. Nishida and F. Sugiyama, Impact three-point bending test of a continuous carbon fiber-reinforced silicon nitride, J. Soc. Mater. Sci. Japan 45, 799–804 (1996).
  15. F. Higashida, and K. Ogawa, Impact three-point bending tests on FRP by split-Hopkinson Bar technique, J. Soc. Mater. Sci. Japan 39, 1462–1468 (1990).
  16. A. J. Kinloch and R. J. Young, Fracture Behavior of Polymers. Elsevier (1983).