Proteasome Function Is Inhibited by Polyglutamine-expanded Ataxin-1, the SCA1 Gene Product

  • Park, Yongjae (Graduate School of Biotechnology, Korea University) ;
  • Hong, Sunghoi (Graduate School of Biotechnology, Korea University) ;
  • Kim, Sung-Jo (Graduate School of Biotechnology, Korea University) ;
  • Kang, Seongman (Graduate School of Biotechnology, Korea University)
  • Received : 2004.07.19
  • Accepted : 2004.09.13
  • Published : 2005.02.28

Abstract

Spinocerebellar ataxia type 1 (SCA1) is an autosomal-dominant neurodegenerative disorder caused by expansion of the polyglutamine tract in the SCA1 gene product, ataxin-1. Using d2EGFP, a short-lived enhanced green fluorescent protein, we investigated whether polyglutamine-expanded ataxin-1 affects the function of the proteasome, a cellular multicatalytic protease that degrades most misfolded proteins and regulatory proteins. In Western blot analysis and immunofluorescence experiments, d2EGFP was less degraded in HEK 293T cells transfected with ataxin-1(82Q) than in cells transfected with lacZ or empty vector controls. To test whether the stability of the d2EGFP protein was due to aggregation of ataxin-1, we constructed a plasmid carrying $ataxin-1-{\Delta}114$, lacking the self-association region (SAR), and examined degradation of the d2EGFP. Both the level of $ataxin-1-{\Delta}114$ aggregates and the amount of d2EGFP were drastically reduced in cells containing $ataxin-1-{\Delta}114$. Furthermore, d2EGFP localization experiments showed that polyglutamine-expanded ataxin-1 inhibited the general function of the proteasome activity. Taken together, these results demonstrate that polyglutamine-expanded ataxin-1 decreases the activity of the proteasome, implying that a disturbance in the ubiquitin-proteasome pathway is directly involved in the development of spinocerebellar ataxia type1.

Keywords

Acknowledgement

Supported by : Ministry of Health & Welfare

References

  1. The Huntington' Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington' disease chromosomes. Cell 72, 971-983 https://doi.org/10.1016/0092-8674(93)90585-E
  2. Andreatta, C., Nahreini, P., Hovland, A. R., Kumar, B., Edwards-Prasad, J., et al. (2001) Use of short-lived green fluorescent protein for the detection of proteasome inhibition. Biotechniques 30, 656−660
  3. Banerjee, D. and Liefshitz, A. (2001) Potential of the proteasomal inhibitor MG-132 as an anticancer agent, alone and in combination. Anticancer Res. 21, 3941-3947
  4. Bence, N. F., Sampat, R. M., and Kopito, R. R. (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552-1555 https://doi.org/10.1126/science.292.5521.1552
  5. Brown, R. H. Jr. (1998) SOD1 aggregates in ALS: cause, correlate or consequence? Nat. Med. 4, 1362-1364 https://doi.org/10.1038/3945
  6. Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., et al. (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507-511 https://doi.org/10.1038/416507a
  7. Chen, H. K., Fernandez-Funez, P., Acevedo, S. F., Lam, Y. C., Kaytor, M. D., et al. (2003) Interaction of akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell 113, 457-468 https://doi.org/10.1016/S0092-8674(03)00349-0
  8. Conway, K. A., Harper, J. D., and Lansbury, P. T. (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318-1320 https://doi.org/10.1038/3311
  9. Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Harper, J. D., et al. (2000) Accelerated oligomerization by Parkinson's disease linked alpha-synuclein mutants. Ann. N. Y. Acad. Sci. 920, 42-45
  10. Cummings, C. J., Mancini, M. A., Antalffy, B., DeFranco, D. B., Orr, H. T., et al. (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet. 19, 148-154 https://doi.org/10.1038/502
  11. Cummings, C. J., Orr, H. T., and Zoghbi, H. Y. (1999) Progress in pathogenesis studies of spinocerebellar ataxia type 1. Philos. Trans. R Soc. Lond. B Biol. Sci. 354, 1079-1081 https://doi.org/10.1098/rstb.1999.0462
  12. Cummings, C. J., Sun, Y., Opal, P., Antalffy, B., Mestril, R., et al. (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum. Mol. Genet. 10, 1511-1518 https://doi.org/10.1093/hmg/10.14.1511
  13. David, G., Abbas, N., Stevanin, G., Durr, A., Yvert, G., et al. (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat. Genet. 17, 65-70 https://doi.org/10.1038/ng0997-65
  14. Davidson, J. D., Riley, B., Burright, E. N., Duvick, L. A., Zoghbi, H. Y., et al. (2000) Identification and characterization of an ataxin-1-interacting protein: A1Up, a ubiquitin-like nuclear protein. Hum. Mol. Genet. 9, 2305-2312 https://doi.org/10.1093/hmg/9.1.1
  15. DiFiglia, M., Sapp, E., Chase, K. O., Davies, S. W., Bates, G. P., et al. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990-1993 https://doi.org/10.1126/science.277.5334.1990
  16. Emamian, E. S., Kaytor, M. D., Duvick, L. A., Zu, T., Tousey, S. K., et al. (2003) Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron 38, 375-387 https://doi.org/10.1016/S0896-6273(03)00258-7
  17. Hong, S., Kim, S. J., Ka, S., Choi, I., and Kang, S. (2002) USP7, a ubiquitin-specific protease, interacts with ataxin-1, the SCA1 gene product. Mol. Cell. Neurosci. 20, 298-306 https://doi.org/10.1006/mcne.2002.1103
  18. Jana, N. R., Zemskov, E. A., Wang, G., and Nukina, N. (2001) Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cyto- chrome c release. Hum. Mol. Genet. 10, 1049-1059 https://doi.org/10.1093/hmg/10.10.1049
  19. Johnston, J. A., Ward, C. L., and Kopito, R. R. (1998) Aggresomes:a cellular response to misfolded proteins. J. Cell Biol. 143, 1883-1898 https://doi.org/10.1083/jcb.143.7.1883
  20. Kawaguchi, Y., Okamoto, T., Taniwaki, M., Aizawa, M., Inoue, M., et al. (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat. Genet. 8, 221-228 https://doi.org/10.1038/ng1194-221
  21. Kayed, R., Head, E., Thompson, J. L., McIntire, T. M., Milton, S. C., et al. (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486-489 https://doi.org/10.1126/science.1079469
  22. Keller, J. N., Hanni, K. B., and Markesbery, W. R. (2000) Impaired proteasome function in Alzheimer' disease. J. Neurochem. 75, 436-439 https://doi.org/10.1046/j.1471-4159.2000.0750436.x
  23. Kim, S.-J., Kim, T.-S., Kim, I. Y., Hong, S., Rhim, H., et al. (2003a) Polyglutamine-expanded ataxin-1 recruits Cu/Zn superoxide dismutase into the nucleus of HeLa cells. Biochem. Biophys. Res. Commun. 307, 660-665 https://doi.org/10.1016/S0006-291X(03)01241-5
  24. Kim, S.-J., Kim, T.-S., Hong, S., Rhim, H., Kim, I. Y., et al. (2003b) Oxidative stimuli affect polyglutmine aggregation cell death in human mutant ataxin-1-expressing cells. Nueurosci. Lett. 348, 21-24 https://doi.org/10.1016/S0304-3940(03)00657-8
  25. Klement, I. A., Skinner, P. J., Kaytor, M. D., Yi, H., Hersch, S. M., et al. (1998) Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41-53 https://doi.org/10.1016/S0092-8674(00)81781-X
  26. Klement, I. A., Zoghbi, H. Y., and Orr, H. T. (1999) Pathogenesis of polyglutamine-induced disease: A model for SCA1. Mol. Genet. Metab. 66, 172-178 https://doi.org/10.1006/mgme.1999.2801
  27. Koide, R., Ikeuchi, T., Onodera, O., Tanaka, H., Igarashi, S., et al. (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat. Genet. 6, 9-13 https://doi.org/10.1038/ng0194-9
  28. Kouroku, Y., Fujita, E., Jimbo, A., Kikuchi, T., Yamagata, T., et al. (2002) Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum. Mol. Genet. 11, 1505-1515 https://doi.org/10.1093/hmg/11.13.1505
  29. McNaught, K. S. and Jenner, P. (2001) Proteasomal function is impaired in substantia nigra in Parkinson' disease. Neurosci. Lett. 297, 191-194 https://doi.org/10.1016/S0304-3940(00)01701-8
  30. McNaught, K. S., Olanow, C. W., Halliwell, B., Isacson, O., and Jenner, P. (2001) Failure of the ubiquitin-proteasome system in Parkinson' disease. Nat. Rev. Neurosci. 2, 589-594 https://doi.org/10.1038/35086067
  31. McNaught, K. S., Mytilineou, C., Jnobaptiste, R., Yabut, J., Shashidharan, P., et al. (2002) Impairment of the ubiquitinproteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J. Neurochem. 81, 301-306 https://doi.org/10.1046/j.1471-4159.2002.00821.x
  32. Morishima-Kawashima, M. and Ihara, Y. (2002) Alzheimer' disease: beta-amyloid protein and tau. J. Neurosci. Res. 70, 392-401 https://doi.org/10.1002/jnr.10355
  33. Murakami, Y., Matsufuji, S., Kameji, T., Hayashi, S., Igarashi, K., et al. (1992) Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360, 597-599 https://doi.org/10.1038/360597a0
  34. Nahreini, P., Andreatta, C., and Prasad, K. N. (2001) Proteasome activity is critical for the cAMP-induced differentiation of neuroblastoma cells. Cell. Mol. Neurobiol. 21, 509-521 https://doi.org/10.1023/A:1013819423394
  35. Nishitoh, H., Matsuzawa, A., Tobiume, K., Saegusa, K., Takeda, K., et al. (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16, 1345-1355 https://doi.org/10.1101/gad.992302
  36. 30 Proteasome Impairment by Mutant Ataxin-1 Orr, H. T. and Zoghbi, H. Y. (2001) SCA1 molecular genetics: a history of a 13 year collaboration against glutamines. Hum. Mol. Genet. 10, 2307-2311 https://doi.org/10.1093/hmg/10.20.2307
  37. Pulst, S. M., Nechiporuk, A., Nechiporuk, T., Gispert, S., Chen, X. N., et al. (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat. Genet. 14, 269-276 https://doi.org/10.1038/ng1196-269
  38. Rideout, H. J., Larsen, K. E., Sulzer, D., and Stefanis, L. (2001) Proteasomal inhibition leads to formation of ubiquitin/alphasynuclein-immunoreactive inclusions in PC12 cells. J. Neurochem. 78, 899-908 https://doi.org/10.1046/j.1471-4159.2001.00474.x
  39. Sanchez, I., Mahlke, C., and Yuan, J. (2003) Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421, 373-379 https://doi.org/10.1038/nature01301
  40. Shang, F., Nowell, T. R. Jr., and Taylor, A. (2001) Removal of oxidatively damaged proteins from lens cells by the ubiquitin-proteasome pathway. Exp. Eye Res. 73, 229-238 https://doi.org/10.1006/exer.2001.1029
  41. Skinner, P. J., Vierra-Green, C. A., Emamian, E., Zoghbi, H. Y., and Orr, H. T. (2002) Amino acids in a region of ataxin-1 outside of the polyglutamine tract influence the course of disease in SCA1 transgenic mice. Neuromolecular Med. 1, 33-42 https://doi.org/10.1385/NMM:1:1:33
  42. Thompson, M. G., Thom, A., Partridge, K., Garden, K., Campbell, G. P., et al. (1999) Stimulation of myofibrillar protein degradation and expression of mRNA encoding the ubiquitinproteasome system in C(2)C(12) myotubes by dexamethasone:effect of the proteasome inhibitor MG-132. J. Cell. Physiol. 181, 455-461 https://doi.org/10.1002/(SICI)1097-4652(199912)181:3<455::AID-JCP9>3.0.CO;2-K
  43. Yasuda, S., Inoue, K., Hirabayashi, M., Higashiyama, H., Yamamoto, Y., et al. (1999) Triggering of neuronal cell death by accumulation of activated SEK1 on nuclear polyglutamine aggregations in PML bodies. Genes Cells 4, 743-756 https://doi.org/10.1046/j.1365-2443.1999.00294.x
  44. Yokota, T., Sugawara, K., Ito, K., Takahashi, R., Ariga, H., et al. (2003) Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem. Biophys. Res. Commun. 312, 1342-1348 https://doi.org/10.1016/j.bbrc.2003.11.056
  45. Zhang, M., Pickart, C. M., and Coffino, P. (2003) Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J. 22, 1488-1496 https://doi.org/10.1093/emboj/cdg158
  46. Zhuchenko, O., Bailey, J., Bonnen, P., Ashizawa, T., Stockton, D. W., et al. (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat. Genet. 15, 62-69 https://doi.org/10.1038/ng0197-62