DOI QR코드

DOI QR Code

Noninvasive Imaging of Atherosclerotic Plaques Using MRI and CT

Choe, Yeon-Hyeon

  • Published : 2005.01.30

Abstract

Noninvasive, high-resolution MRI has shown its efficacy in the visualization of carotid atherosclerotic plaque characteristics. MRI is the only noninvasive option for thin plaque cap, active inflammation, fissured/injured plaque and intraplaque hemorrhage, is also useful in monitoring the response after statin therapy, and has the potential to image a coronary plaque and to determine its composition. New contrast agents and targeted molecular imaging open a window for MRI detection of thrombi and assessment of atherosclerotic activity and plaque vulnerability. Currently, multidetector CT is capable of the noninvasive detection of coronary stenosis and coronary calcifications. High resolution CT may be beneficial in the detection of noncalcified vulnerable coronary plaques, and more reliable with the use of newer high-speed volume CT scanners.

Keywords

References

  1. Schoenhagen P, Halliburton SS, Stillman AE, et al. Noninvasive imaging of coronary arteries: current and future role of multidetector row CT. Radiology 2004;232:7-17 https://doi.org/10.1148/radiol.2321021803
  2. Schoepf UJ, Becker CR, Ohnesorge BM, Yucel EK. CT of coronary artery disease. Radiology 2004;232:18-37 https://doi.org/10.1148/radiol.2321030636
  3. Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 2001;345:1863-9 https://doi.org/10.1056/ENEJM200108023450524
  4. Flamm SD, Muthupillai R. Coronary artery magnetic resonance angiography. J Magn Reson Imaging 2004;19:686-709 https://doi.org/10.1002/jmri.20074
  5. Choudhury RP, Fuster V, Badimon JJ, Fisher EA, Fayad ZA. MRI and characterization of atherosclerotic plaque. Emerging applications and molecular imaging. Arterioscler Thromb Vasc Biol 2002; 22:1065-74 https://doi.org/10.1161/01.ATV.0000019735.54479.2F
  6. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003;108:1664-72 https://doi.org/10.1161/01.CIR.0000087480.94275.97
  7. Choe YH. Ultrasonographic diagnosis of the carotid abnormalities. J Korean Soc Med Ultrasound 2000;19:151-9
  8. Yuan C, Mitsumori LM, Beach KW, Maravilla KR. Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology 2001;221:285-99 https://doi.org/10.1148/radiol.2211010366
  9. Serfaty J-M, Chaabane L, Tabib A, Chevallier J-M, Briguet A, Douek PC. Atherosclerotic plaques: classification and characterization with T2-weighted high-resolution MRI-an in vitro study. Radiology 2001;219:403-10 https://doi.org/10.1148/radiology.219.2.r01ma15403
  10. Hatsukami TS, Ross R, Polissar NL, Yuan C. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 2000;102:959-64 https://doi.org/10.1161/01.CIR.102.9.959
  11. Mitsumori LM, Hatsukami TS, Ferguson MS, Kerwin WS, Cai J, Yuan C. In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques. J Magn Reson Imaging 2003;17:410-20 https://doi.org/10.1002/jmri.10264
  12. Yuan C, Mitsumori LM, Ferguson MS, et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipidrich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 2001;104:2051-6 https://doi.org/10.1161/hc2601.093182
  13. Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 2002 10;106:1368-73 https://doi.org/10.1161/01.CIR.0000028591.44554.F9
  14. Trivedi RA, U-King-Im J, Graves MJ, et al. Multi-sequence in vivo MRI can quantify fibrous cap and lipid core components in human carotid atherosclerotic plaques. Eur J Vasc Endovasc Surg 2004;28:207-13 https://doi.org/10.1016/j.ejvs.2004.05.001
  15. Yuan C, Zhang SX, Polissar NL, et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 2002;105:181-5 https://doi.org/10.1161/hc0102.100422
  16. Chu B, Kampschulte A, Ferguson MS, et al. Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study. Stroke 2004;35:1079-84 https://doi.org/10.1161/01.STR.0000125856.25309.86
  17. Kampschulte A, Ferguson MS, Kerwin WS, et al. Differentiation of intraplaque versus juxtaluminal hemorrhage/thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging. Circulation 2004;110:3239-44 https://doi.org/10.1161/01.CIR.0000147287.23741.9A
  18. Cappendijk VC, Cleutjens KB, Heeneman S, et al. In vivo detection of hemorrhage in human atherosclerotic plaques with magnetic resonance imaging. J Magn Reson Imaging 2004;20:105-10 https://doi.org/10.1002/jmri.20060
  19. Yuan C, Kerwin WS, Ferguson MS, et al. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging 2002;15:62-7 https://doi.org/10.1002/jmri.10030
  20. Kerwin W, Hooker A, Spilker M, et al. Quantitative magnetic resonance imaging analysis of neova-sculature volume in carotid atherosclerotic plaque. Circulation 2003;107:851-6 https://doi.org/10.1161/01.CIR.0000046072.10311.41
  21. Weiss CR, Arai AE, Bui MN, et al. Arterial wall MRI characteristics are associated with elevated serum markers of inflammation in humans. J Magn Reson Imaging 2001;14:698-704 https://doi.org/10.1002/jmri.1143
  22. McConnell MV, Aikawa M, Maier SE, Ganz P, Libby P, Lee RT. MRI of rabbit atherosclerosis in response to dietary cholesterol lowering. Arterioscler Thromb Vasc Biol 1999;19:1956-9 https://doi.org/10.1161/01.ATV.19.8.1956
  23. Helft G, Worthley SG, Fuster V, et al. Progression and regression of atherosclerotic lesions. Monitoring with serial noninvasive magnetic resonance imaging. Circulation 2002;105:993-8 https://doi.org/10.1161/hc0802.104325
  24. Corti R, Fuster V, Fayad ZA, et al. Lipid lowering by Simvastatin induces regression of human atherosclerotic lesions: two years' follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation 2002;106:2884-7 https://doi.org/10.1161/01.CIR.0000041255.88750.F0
  25. Corti R, Osende JI, Fallon JT, et al. The selective peroxisomal proliferator-activated receptor-gamma agonist has an additive effect on plaque regression in combination with Simvastatin in experimental atherosclerosis: in vivo study by high-resolution magnetic resonance imaging. J Am Coll Cardiol 2004;43:464-73 https://doi.org/10.1016/j.jacc.2003.08.048
  26. Lima JA, Desai MY, Steen H, Warren WP, Gautam S, Lai S. Statininduced cholesterol lowering and plaque regression after 6 months of magnetic resonance imaging-monitored therapy. Circulation 2004;110:2336-41 https://doi.org/10.1161/01.CIR.0000145170.22652.51
  27. Zhao XQ, Yuan C, Hatsukami TS, et al. Effects of prolonged intensive lipid-lowering therapy on the characteristics of carotid atherosclerotic plaques in vivo by MRI: a case-control study. Arterioscler Thromb Vasc Biol 2001;21:1623-9 https://doi.org/10.1161/hq0701.093122
  28. Fayad ZA, Fuster V, Fallon JT, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using blackblood magnetic resonance imaging. Circulation 2000;102:506-10 https://doi.org/10.1161/01.CIR.102.5.506
  29. Botnar RM, Stuber M, Kissinger KV,. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 2000;102:2582-7 https://doi.org/10.1161/01.CIR.102.21.2582
  30. Botnar RM, Kim WY, Bornert P, Stuber M, Spuentrup E, Manning WJ. 3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition. Magn Reson Med 2001;46:848-54 https://doi.org/10.1002/mrm.1152
  31. Kim WY, Stuber M, Bornert P, Kissinger KV, Manning WJ, Botnar RM. Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 2002;106:296-9 https://doi.org/10.1161/01.CIR.0000025629.85631.1E
  32. Nikolaou K, Becker CR, Muders M, et al. Multidetector-row computed tomography and magnetic resonance imaging of atherosclerotic lesions in human ex vivo coronary arteries. Atherosclerosis 2004;174:243-52 https://doi.org/10.1016/j.atherosclerosis.2004.01.041
  33. Botnar RM, Bucker A, Kim WY, Viohl I, Gunther RW, Spuentrup E. Initial experiences with in vivo intravascular coronary vessel wall imaging. J Magn Reson Imaging 2003;17:615-9 https://doi.org/10.1002/jmri.10291
  34. Botnar RM, Stuber M, Lamerichs R, et al. Initial experiences with in vivo right coronary artery human MR vessel wall imaging at 3 tesla. J Cardiovasc Magn Reson 2003;5:589-94 https://doi.org/10.1081/JCMR-120025232
  35. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbit. Circulation 2001;103:415-22 https://doi.org/10.1161/01.CIR.103.3.415
  36. Kooi ME, Cappendijk VC, Cleutjens KBJM, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003;107:2453-8 https://doi.org/10.1161/01.CIR.0000068315.98705.CC
  37. Schmitz SA, Taupitz M, Wagner S, Wolf K-J, Beyersdorff D, Hamm B. Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles. J Magn Reson Imaging 2001;14:355-61 https://doi.org/10.1002/jmri.1143
  38. Trivedi RA, U-King-Im JM, Graves MJ, et al. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxideenhanced MRI. Stroke 2004;35:1631-5 https://doi.org/10.1161/01.STR.0000111515.14897.3B
  39. Litovsky S, Madjid M, Zarrabi A, Casscells SW, Willerson JT, Naghavi M. Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma. Circulation 2003;107:1545-9 https://doi.org/10.1161/01.CIR.0000046072.10311.41
  40. Barkhausen J, Ebert W, Heyer C, Debatin J, Weinmann H. Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging. Circulation 2003;108:605-9 https://doi.org/10.1161/01.CIR.0000079099.36306.10
  41. Sirol M, Itskovich VV, Mani V, et al. Lipid-rich atherosclerotic plaques detected by Gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation 2004;109:2890-6 https://doi.org/10.1161/01.CIR.0000129310.17277.E7
  42. Flacke S, Fischer S, Scott MJ, et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 2001;104:1280-5 https://doi.org/10.1161/hc2601.093182
  43. Botnar RM, Buecker A, Wiethoff AJ, et al. In vivo magnetic resonance imaging of coro-nary thrombosis using a fibrinbinding molecular magnetic reso-nance contrast agent. Circulation 2004;110:1463-6 https://doi.org/10.1161/01.CIR.0000134960.31304.87
  44. Botnar RM, Perez AS, Witte S, et al. In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 2004;109:2023-9 https://doi.org/10.1161/01.CIR.0000127034.50006.C0
  45. Johansson LO, Bj$\phi$rnerud A, AhlstrOm, Ladd DL, Fujii DK. A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution. J Magn Reson Imaging 2001;13:615-8 https://doi.org/10.1002/1522-2586(200101)13:1<1::AID-JMRI1000>3.0.CO;2-Y
  46. Chen JW, Pham W, Weisledder R, Bogdanov A. Human myeloperoxidase: a potential target for molecular MRI in atherosclerosis. Magn Reson Med 2004;52:1021-8 https://doi.org/10.1002/mrm.20134
  47. Winter PM, Morawski AM, Caruthers SD, et al. Molecular imaging of angiogenesis in earlystage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation. 2003;108:2270-4 https://doi.org/10.1161/01.CIR.0000093185.16083.95
  48. Lanza GM, Yu X, Winter PM, et al. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation 2002;106:2842-7 https://doi.org/10.1161/01.CIR.0000044020.27990.32
  49. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990;15:827-32 https://doi.org/10.1016/0735-1097(90)90282-T
  50. Wexler L, Brundage B, Crouse J, et al. Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association. Circulation 1996;94:1175-92 https://doi.org/10.1161/01.CIR.94.5.1175
  51. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 2003;228:826-33 https://doi.org/10.1148/radiol.2283021006
  52. Viles-Gonzalez JF, Poon M, Sanz J, et al. In vivo 16-slice, multidetector-row computed tomography for the assessment of experimental atherosclerosis: comparison with magnetic resonance imaging and histopathology. Circulation 2004;110:1467-72 https://doi.org/10.1161/01.CIR.0000141732.28175.2A
  53. Nikolaou K, Becker CR, Muders M, et al. Multidetector-row computed tomography and magnetic resonance imaging of atherosclerotic lesions in human ex vivo coronary arteries. Atherosclerosis 2004;174:243-52 https://doi.org/10.1016/j.atherosclerosis.2004.01.041
  54. Schroeder S, Kuettner A, Wojak T, et al. Non-invasive evaluation of atherosclerosis with contrast enhanced 16 slice spiral computed tomography: results of ex vivo investigations. Heart 2004;90:1471-5 https://doi.org/10.1136/heart.90.1.1
  55. Becker CR, Nikolaou K, Muders M, et al. Ex vivo coronary atherosclerotic plaque characterization with multi-detectorrow CT. Eur Radiol 2003;13:2094-8 https://doi.org/10.1007/s00330-003-1889-5
  56. Schroeder S, Kopp AF, Baumbach A, et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 2001;37:1430-5 https://doi.org/10.1016/S0735-1097(00)01044-5
  57. Kopp AF, Schroeder S, Baumbach A, et al. Non-invasive characterisation of coronary lesion morphology and composition by multislice CT: first results in comparison with intracoronary ultrasound. Eur Radiol 2001;11:1607-11 https://doi.org/10.1007/s003300000719
  58. Leber AW, Knez A, Becker A, et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol 2004;43:1241-7 https://doi.org/10.1016/j.jacc.2003.06.020
  59. Achenbach S, Moselewski F, Ropers D, et al. Detection of calcified and noncalcified coronary atherosclerostic plaque by contrastenhanced, submillimeter multidetector spiral computed tomography. A segment-based compa-rison with intravascular ultrasound. Circulation 2004;109:14-7 https://doi.org/10.1161/01.CIR.0000111517.69230.0F
  60. Langheinrich AC, Bohle RM, Greschus S, et al. Atherosclerotic lesions at micro CT: feasibility for analysis of coronary artery wall in autopsy specimens. Radiology 2004;231:675-81 https://doi.org/10.1148/radiol.2311031897
  61. Flohr TG, Schoepf UI, Kuettner. Advances in cardiac imaging with 16-section systems. Acad Radiol 2003;10:386-401 https://doi.org/10.1016/S1076-6332(03)80027-2
  62. Bae KT, Hong C, Whiting BR. Radiation dose in multidetector row computed tomography cardiac imaging. J Magn Reson Imaging 2004;19:859-63 https://doi.org/10.1002/jmri.20069

Cited by

  1. Noninvasive Detection of Coronary Atherosclerotic Plaques and Assessment of Stenosis Degree at Multidetector CT Coronary Angiography vol.50, pp.2, 2005, https://doi.org/10.5124/jkma.2007.50.2.109
  2. 관상동맥 전산화단층촬영에서 64 channel MDCT와 128 channel DSCT의 임상 유용성 평가 vol.11, pp.11, 2010, https://doi.org/10.5762/kais.2010.11.11.4411
  3. A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography vol.20, pp.7, 2005, https://doi.org/10.1007/s11883-018-0736-8